https://www.selleckchem.com/products/sch-527123.html An analytical method was developed and validated for the determination of three polyether ionophores (monensin, lasalocid, and salinomycin) in 60 samples of Brazilian Minas Frescal cheese by UHPLC-MS/MS. Linearity ranged from 1 to 8 μg kg-1 for monensin and salinomycin, and from 0.50 to 4 μg kg-1 for lasalocid. Limits of detection and quantitation were 0.50 μg kg-1 and 1 μg kg-1, respectively, for both monensin and salinomycin, and 0.25 μg kg-1 and 0.50 μg kg-1, respectively, for lasalocid. Recoveries were between 69% and 84% with coefficients of variation up to 16.28% for repeatability and 13.79% for intermediate precision. A total of 60 samples of Minas Frescal cheese were analysed and only monensin residues were found. Monensin was detected in 55% of the samples and quantified in 5 of them at mean levels varying from 1.00 to 1.73 μg kg-1. The proposed method demonstrated the suitability for monitoring these substances in cheese.Leishmaniasis, a category 1 disease, has remained neglected for decades, and therefore, has developed into a severe health problem worldwide. Unfortunately, the available antileishmanial drugs are limited, and the parasites have shown an inevitable resistance toward most of these drugs. All these factors pose a barrier to control the parasite at present. Hence, new strategies are needed to develop more effective and less toxic nanomedicines that could treat and manage the Leishmania parasite. One of these effective strategies is to construct nanometals with biologically active molecules that could possess dynamic antileishmanial activities with desirable biocompatibility. In this review paper, antileishmanial potencies of different metal nanoparticles, with particular emphasis on biogenic metal nanoparticles from 2011 to 2019, are summarized. The mechanisms by which metal-based nanomedicines kill Leishmania are also discussed.Ocular diseases are an important category in equine medicine;