The coronavirus disease 2019 (COVID-19) pandemic has crudely demonstrated the need for massive and rapid diagnostics. By the first week of July, more than 10,000,000 positive cases of COVID-19 have been reported worldwide, although this number could be greatly underestimated. In the case of an epidemic emergency, the first line of response should be based on commercially available and validated resources. Here, we demonstrate the use of the miniPCR, a commercial compact and portable PCR device recently available on the market, in combination with a commercial well-plate reader as a diagnostic system for detecting genetic material of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19. We used the miniPCR to detect and amplify SARS-CoV-2 DNA sequences using the sets of initiators recommended by the World Health Organization (WHO) for targeting three different regions that encode for the N protein. Prior to amplification, samples were combined with a DNA intercalating reagent (i.e., EvaGreen Dye). Sample fluorescence after amplification was then read using a commercial 96-well plate reader. This straightforward method allows the detection and amplification of SARS-CoV-2 nucleic acids in the range of ~625 to 2×105 DNA copies. The accuracy and simplicity of this diagnostics strategy may provide a cost-efficient and reliable alternative for COVID-19 pandemic testing, particularly in underdeveloped regions where RT-QPCR instrument availability may be limited. The portability, ease of use, and reproducibility of the miniPCR makes it a reliable alternative for deployment in point-of-care SARS-CoV-2 detection efforts during pandemics. Heterosexual infections have contributed to a high proportion of the HIV burden in Asia and Eastern Europe. Human mobility and non-local infections are important features in some cities/countries. An understanding of the determinants of the sustained growth of the heterosexual HIV epidemics would enable the potential impacts of treatment-based interventions to be assessed. We developed a compartmental model for heterosexual HIV transmissions, parameterized by clinical and surveillance data (1984-2014) in Hong Kong. HIV sequence data were included for examining genetic linkages and clustering pattern. We performed sensitivity analyses to evaluate effects of high-risk sexual partnership and proportions of non-locally acquired infections. Four hypothetical interventions (a) immediate treatment, (b) enhancement of retention in care, (c) HIV testing campaigns, and (d) test-and-treat strategy, were examined. Data of 2174 patients (723 female and 1451 male) diagnosed with HIV between 1984 and 2012 in Hong Kong in 2013-2023. Enhanced HIV testing with immediate treatment is most effective in controlling the heterosexual epidemic, the impacts of which might however be attenuated by any increase of non-locally acquired infection, assuming little variations of high risk partnership over time. Enhanced HIV testing with immediate treatment is most effective in controlling the heterosexual epidemic, the impacts of which might however be attenuated by any increase of non-locally acquired infection, assuming little variations of high risk partnership over time.The hepatitis B virus (HBV) envelope is composed of a lipid bilayer and three glycoproteins, referred to as the large (L), middle (M), and small (S) hepatitis B virus surface antigens (HBsAg). S protein constitutes the major portion of the viral envelope and an even greater proportion of subviral particles (SVP) that circulate in the blood. Recombinant S proteins are currently used as a preventive vaccine, while plasma fractions isolated from vaccinated people, referred to as hepatitis B immune globulin (HBIG), are used for short-term prophylaxis. Here, we characterized a recombinant human IgG1 type anti-S antibody named Lenvervimab regarding its binding property to a variety of cloned S antigens. Immunochemical data showed an overall consistent avidity of the antibody to S antigens of most viral genotypes distributed worldwide. Further, antibody binding was not affected by the mutations in the antigenic 'a' determinant found in many clinical variants, including the immune escape mutant G145R. In addition, mutations in the S gene sequence that confer drug resistance to the viral polymerase did not interfere with the antibody binding. These results support for a preventive use of the antibody against HBV infection.The current state of much of the Wuhan pneumonia virus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) research shows a regrettable lack of data sharing and considerable analytical obfuscation. This impedes global research cooperation, which is essential for tackling public health emergencies and requires unimpeded access to data, analysis tools, and computational infrastructure. Here, we show that community efforts in developing open analytical software tools over the past 10 years, combined with national investments into scientific computational infrastructure, can overcome these deficiencies and provide an accessible platform for tackling global health emergencies in an open and transparent manner. Specifically, we use all SARS-CoV-2 genomic data available in the public domain so far to (1) underscore the importance of access to raw data and (2) demonstrate that existing community efforts in curation and deployment of biomedical software can reliably support rapid, reproducible research during global health crises. https://www.selleckchem.com/products/ABT-869.html All our analyses are fully documented at https//github.com/galaxyproject/SARS-CoV-2.Multiscale geometric analysis (MGA) is not only characterized by multi-resolution, time-frequency localization, multidirectionality and anisotropy, but also outdoes the limitations of wavelet transform in representing high-dimensional singular data such as edges and contours. Therefore, researchers have been exploring new MGA-based image compression standards rather than the JPEG2000 standard. However, due to the difference in terms of the data structure, redundancy and decorrelation between wavelet and MGA, as well as the complexity of the coding scheme, so far, no definitive researches have been reported on the MGA-based image coding schemes. In addressing this problem, this paper proposes an image data compression approach using the hidden Markov model (HMM)/pulse-coupled neural network (PCNN) model in the contourlet domain. First, a sparse decomposition of an image was performed using a contourlet transform to obtain the coefficients that show the multiscale and multidirectional characteristics. An HMM was then adopted to establish links between coefficients in neighboring subbands of different levels and directions.