https://www.selleckchem.com/products/lb-100.html Communication between inflammatory cytokines and neurocircuits via the gut-brain axis (GBA) affects behavioral responses, activates mast cells and microglia that causes neuroinflammation, which is associated with neurological diseases. In this comprehensive review, we focus on what is currently known about mast cells and the gut-brain axis relationship, and how this relationship is connected to neurodegenerative diseases. We hope that further elucidating the bidirectional communication between mast cells and the GBA will not only stimulate future research on neurodegenerative diseases but will also identify new opportunities for therapeutic interventions.Subcutaneous administration of rotenone to rats is currently a widely used method of reproducing Parkinson's disease (PD) symptoms, due to its convenience and effectiveness. Despite this, its influence on the temporal dynamics of parkinsonism development has yet to be investigated. The present study characterizes behavioral and neurochemical disruptancies underlying the dynamics of parkinsonism development in rats, induced by chronic subcutaneous administration of 2 mg/kg rotenone over the course of 18 days. In this article, the presence of two stages of pathology development in the model in question - the premotor and motor disability stages - are illustrated through a complex assessment of animal behavior, the development of an original neurological symptoms scale, and the establishment of the dynamics of histological and neurochemical changes in the brain. The premotor stage was observed up to 3 days of rotenone administration, and was characterized by a decrease in the motivational component of behavior, l lobe tissue homogenates, as compared to intact rats. Thus, in the used model of rotenone-induced parkinsonism, the dynamics of neuropathology development are described and the premotor stage of the disease is highlighted, which allows future using of this model