https://www.selleckchem.com/products/cpypp.html Lumichrome (7,8-dimethylalloxazine, LC) is a natural photodegradation product and catabolite of flavin coenzymes. Although not a coenzyme itself, LC is used for biosignaling in plants and single-celled organisms, including quorum sensing in the formation of biofilms. The noninvasive detection of in vivo lumichrome would be useful for monitoring this signaling event. For molecules that undergo significant charge redistribution upon light excitation (e.g., intramolecular charge transfer), there are optical detection methods (e.g., second-harmonic generation) that would be well suited to this task. Here, we have used Stark spectroscopy to measure the extent and direction of charge redistribution in photoexcited LC. Stark and low-temperature absorption spectra were obtained at 77 K on LC in ethanol glasses and analyzed using the Liptay analysis to obtain the difference dipole moments and polarizabilities. These data were complemented by a computational analysis of the excited states using density functional theory (DFT) at the TD-B3LYP/6-311+G(2d,p) level of theory.A novel concept about bifunctional antimicrobial drugs, based on self-assembling protein nanoparticles, has been evaluated here over two biofilm-forming pathogens, namely Pseudomonas aeruginosa and Staphylococcus aureus. Two structurally different antimicrobial peptides (GWH1 and PaDBS1R1) were engineered to form regular nanoparticles of around 35 nm, to which the small molecular weight drug Floxuridine was covalently conjugated. Both the assembled peptides and the chemical, a conventional cytotoxic drug used in oncotherapy, showed potent antimicrobial activities that were enhanced by the combination of both molecules in single pharmacological entities. Therefore, the resulting prototypes show promises as innovative nanomedicines, being potential alternatives to conventional antibiotics. The biological performance and easy fabrication of these materials fully su