https://www.selleckchem.com/products/ly3023414.html Impacts of noise pollution are recognized as a source of stress for animals and as a form of environmental degradation. Behavioural changes associated with noise, such as reduction of reproductive success, reduction in feeding behaviour, increase in vigilance behaviours and inability to detect environment acoustic signals, are observed. The aim of the present study was to evaluate how noise influences aggressive behaviour of the saffron finch (Sicalis flaveola). We conducted tests of territoriality-aggressiveness against conspecifics. Seven individuals were tested, with six tests per individual being conducted in two treatments (traffic pollution and ambient noise), totalling 84 tests. The noise treatment significantly altered the agonistic interactions of the saffron finches, with territorial males exhibiting less aggressive behaviours towards intruders.Precision-cut intestinal slices (PCIS) are used to study intestinal (patho)physiology, drug efficacy, toxicity, transport and metabolism ex vivo. One of the factors that limit the use of PCIS is a relatively short life-span. Moreover, culture-induced changes in cellular composition of PCIS remain largely uncharacterized. In this study, we demonstrated the epithelial cell heterogeneity in mouse and rat PCIS and its alterations during culture. In addition, we evaluated whether the presence of niche growth factors impacts the survival of PCIS epithelial cells. We showed that freshly prepared PCIS retained the main epithelial cell types, namely absorptive enterocytes, goblet cells, enteroendocrine cells, stem cells, transit-amplifying cells and Paneth cells. Once placed in culture, PCIS displayed progressive epithelial damage, and loss of these epithelial cell types. Cells comprising the intestinal stem cell niche were especially sensitive to the damage, and the addition of niche growth factors beneficially affected the survival of stem cells and transit-amplifying cel