Mussels underwent a haemolymph acidosis of 0.1-0.2 pH units in the fluctuating treatments, alongside two-fold increases in the superoxide dismutase activity and DNA damage induced by copper, compared to those induced by copper under static pH conditions. Conversely, ragworms experienced an alkalosis of 0.3 pH units under fluctuating pH/pCO2, driven by a two-fold increase in coelomic fluid bicarbonate. This mitigated the copper-induced oxidative stress to slightly reduce both antioxidant activity and DNA damage, relative to the static pH + copper treatment. These opposing responses suggest that differences in species acid-base physiology were more important in determining toxicity responses than the pH-induced speciation change. With variability in seawater chemistry predicted to increase as climate change progresses, understanding how fluctuating conditions interact with the toxicity of pH-sensitive contaminants will become more crucial in predicting their risk to coastal biota.Climate change is causing extensive alterations to ecosystems globally, with some more vulnerable than others. Alpine ecosystems, characterised by low-temperatures and cryophilic vegetation, provide ecosystems services for billions of people but are considered among the most susceptible to climate change. Therefore, it is timely to review research on climate change on alpine vegetation including assessing trends, topics, themes and gaps. Using a multicomponent bibliometric approach, we extracted bibliometric metadata from 3143 publications identified by searching titles, keywords and abstracts for research on 'climate change' and 'alpine vegetation' from Scopus and Web of Science. While primarily focusing on 'alpine vegetation', some literature that also assessed vegetation below the treeline was captured. There has been an exponential increase in research over 50 years, greater engagement and diversification in who does research, and where it is published and conducted, with increasing focus beyond Europe, particularly in China. Content analysis of titles, keywords and abstracts revealed that most of the research has focused on alpine grasslands but there have been relatively few publications that examine specialist vegetation communities such as snowbeds, subnival vegetation and fellfields. Important themes emerged from analysis of keywords, including treelines and vegetation dynamics, biodiversity, the Tibetan Plateau as well as grasslands and meadows. Traditional ecological monitoring techniques were important early on, but remote sensing has become the primary method for assessment. A key book on alpine plants, the IPCC reports and a few papers in leading journals underpin much of the research. Overall, research on this topic is increasing, with new methods and directions but thematic and geographical gaps remain particularly for research on extreme climatic events, and research in South America, in part due to limited capacity for research on these rare but valuable ecosystems.Coastal wetlands contain some of the largest stores of pedologic and biotic carbon pools, and climate change is likely to influence the ability of these ecosystems to sequester carbon. Recent studies have attempted to provide data on carbon sequestration in both temperate and tropical coastal wetlands. Alteration of Arctic wetland carbon sequestration rates is also likely where coastal forcing mechanisms interact directly with these coastal systems. At present there are no data available to provide a detailed understanding of present day and historical carbon sequestration rates within Arctic coastal wetlands. In order to address this knowledge gap, rates of carbon sequestration were assessed within five Arctic coastal wetland sites in Norway. This was undertaken using radiometric dating techniques (210Pb and 137Cs) to establish a geochronology for recent wetland development, and soil carbon stocks were estimated from cores. Average carbon sequestration rates were varied, both between sites and over time, ranging between 19 and 603 g C m2 y-1, and these were correlated with increases in the length of the growing season. Stocks ranged between 3.67 and 13.79 Mg C ha-1, which is very low compared with global average estimations for similar coastal systems, e.g. 250 Mg C ha-1 for temperate salt marshes, 280 Mg C ha-1 for mangroves, and 140 Mg C ha-1 for seagrasses. This is most likely due to isostatic uplift and sediment accretion historically outpacing sea level rise, which results in wetland progradation and thus a continuous formation of new marsh with thin organic soil horizons. However, with increasing rates of sea level rise it is uncertain whether this trend is set to continue or be reversed.Numerous studies have investigated the impact of nitrogen (N) addition on ecosystem carbon (C) storage and cycling. However, how N addition regulates the dynamics of different soil organic carbon (SOC) fractions and the underlying microbial mechanisms remain unclear. https://www.selleckchem.com/products/LY2228820.html In this study, we assessed microbial controls (through biomass, residues and enzymes) of different SOC fractions (particulate organic carbon, POC and mineral-associated organic carbon, MAOC) in response to six years of N addition (50 kg N ha-1 yr-1) in two temperate forests (Betula platyphylla vs. Quercus wutaishanica) in Northern China. Plant inputs (root biomass and leaf litterfall) and soil chemistry (pH, extractable inorganic N, and exchangeable cations) were unaltered by N addition in both forests. In the Q. wutaishanica forest, microbial biomass, residues, and enzymes were not sensitive to N addition, which may explain the lack of response in SOC and two fractions (POC and MAOC). However, in the B. platyphylla forest, although microbial biomass and enzymes as well as SOC and POC did not significantly change after N addition, both microbial residues (amino sugars) and MAOC significantly increased after N addition. Moreover, there was a strong positive correlation between microbial residues and MAOC pool within or across the two forests. Collectively, these results suggest that the dynamics of microbial residues play a crucial role in controlling the response of mineral-associated SOC to N addition in these two forests. Separating bulk soil into distinct functional pools and considering microbial residues should help reveal the nuanced response of soil C dynamics under N addition.