https://www.selleckchem.com/products/pci-34051.html Solution equilibrium constants showed that the studied metal complexes have high stability, and no dissociation was found for Ru and Rh complexes even at micromolar concentrations in a wide pH range. However, in the case of Ru complexes a slow and irreversible decomposition, namely arene loss, was also observed, which was more pronounced in light exposure in aqueous solution. In the case of neo, the methyl groups next to the nitrogen atoms significantly decrease the stability of complexes. For Rh complexes, the order of the stability constants corrected with ligand basicity (log K*) 9.78 (phen) > 9.01 (dmb) > 8.89 (bpy) > 3.93 (neo). The coordinated neo resulted in an enormous decrease in the chloride ion affinity of Ru compounds. Based on the results, a universal model was introduced for the prediction of chloride ion capability of half-sandwich Rh and Ru complexes. It combines the effects of the bidentate ligand and the M(arene) part using only two terms, performing multilinear regression procedure.This frontiers article highlights recent developments of the use of N-heterocyclic silylenes (NHSis), the higher homologues of the Arduengo-carbenes, as ambiphilic activators and ligands in organometallic chemistry and provides a comparison of five-membered ring NHSi ligands with ubiquitous N-heterocyclic carbene (NHC) and phosphine ligands. The frontier orbital region of NHSis differs considerably from that of NHCs which results in different ligation properties. The donor properties of NHSis are closer to those of phosphines than to those of NHCs. NHSis reveal a much stronger tendency to act as bridging ligands between two metal centres than NHCs or phosphines and NHSi insertion reactions into metal-ligand bonds are more facile to achieve compared to similar insertion reactions of NHCs. These interesting properties clearly distinguish NHSi ligands from their NHC or phosphine counterparts and should provide novel react