https://www.selleckchem.com/products/abemaciclib.html Radioactive seed implantation is an effective invasive treatment method for malignant liver tumors in hepatocellular carcinomas. However, challenges of the manual procedure may degrade the efficacy of the technique, such as the high accuracy requirement and radiation exposure to the surgeons. This paper aims to develop a robotic system and its control methods for assisting surgeons on the treatment. We present an interventional robotic system, which consists of a 5 Degree-of-Freedom (DoF) positioning robotic arm (a 3-DoF translational joint and a 2-DoF revolute joint) and a needle actuator used for needle insertion and radioactive seeds implantation. Control strategy is designed for the system to ensure the safety of the motion. In the designed framework, an artificial potential field (APF)-based motion planning and an ultrasound (US) image-based contacting methods are proposed for the control. Experiments were performed to evaluate position and orientation accuracy as well as validate the motion planniion and automate the process of US probe contacting under the feedback of US-image. During maxillofacial trauma or oral cancer surgery, peripheral nerve might be damaged by traction injury. The purpose of this study was to evaluate functional and histomorphometric changes after traction nerve injury in the sciatic nerve of a rat model. A total of 24 Sprague-Dawley rats were equally divided into three groups unstretched (sham/control, group A), stretched with 0.7N (group B) and 1.5N (group C). Traction injury was performed for 10 min in B and C groups. Functional recovery of the sciatic nerve was evaluated by walking track analysis, toe spread test, and pinprick test 2 weeks after injury. The weight of gastrocnemius muscles of both sides was measured to evaluate weight ratio (ipsilateral/contralateral). Total number of axons, axon fiber size, myelin thickness, G-ratio, axon number/mm , diameter of fiber, changes of