https://www.selleckchem.com/products/noradrenaline-bitartrate-monohydrate-levophed.html Chlamydia is an obligate intracellular bacterial pathogen that has significantly reduced its genome size in adapting to its intracellular niche. Among the genes that Chlamydia has eliminated is ftsZ, encoding the central organizer of cell division that directs cell wall synthesis in the division septum. These Gram-negative pathogens have cell envelopes that lack peptidoglycan (PG), yet they use PG for cell division purposes. Recent research into chlamydial PG synthesis, components of the chlamydial divisome, and the mechanism of chlamydial division have significantly advanced our understanding of these processes in a unique and important pathogen. For example, it has been definitively confirmed that chlamydiae synthesize a canonical PG structure during cell division. Various studies have suggested and provided evidence that Chlamydia uses MreB to substitute for FtsZ in organizing and coordinating the divisome during division, components of which have been identified and characterized. Finally, as opposed to using an FtsZ-dependent binary fission process, Chlamydia employs an MreB-dependent polarized budding process to divide. A brief historical context for these key advances is presented along with a discussion of the current state of knowledge of chlamydial cell division.Enterococcus faecalis is an opportunistic pathogen capable of causing infections including endocarditis and urinary tract infections (UTI). One of the well characterized quorum sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes including sporulation, competence, conjugation, nutrient sensing, biofilm formation and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the