https://www.selleckchem.com/GSK-3.html There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. Fourteen day administration of a slow-pressor dose of AngII in male mice was associated with transcriptional and post-transcriptional (increased plasma membrane affiliation) regulation of TNFR1 in the PVN. Further, TNFR1 was shown to be critical for elevated NMDA-mediated excitatory currents in sympathoexcitatory PVN neurons following AngII infusion. Finally, silencing PVN TNFlly, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.The BAD-BAX-caspase-3 cascade is a canonical apoptosis pathway. Macroautophagy ("autophagy" hereinafter) is a process by which organelles and aggregated proteins are delivered to lysosomes for degradation. Here, we report a new function of the BAD-BAX-caspase-3 cascade and autophagy in the control of synaptic vesicle pools. We found that, in hippocampal neurons of male mice, the BAD-BAX-caspase-3 pathway regulates autophagy, which in turn limits the size of synaptic vesicle pools and influences the kinetics of activity-induced depletion and recovery of synaptic vesicle pools. Moreover, the caspase-autophagy pathway is engaged by fear conditioning to facilitate associative fear learning and memory. This work identifies a new mechanism for controlling synapt