https://www.selleckchem.com/products/GDC-0449.html Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts. Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts. Social dysfunction is a putative risk and maintaining factor for Eating Disorders (EDs). We assessed biological, emotional, and cognitive responses to a psychosocial stressor, in order to provide a multilevel investigation of the RDoC social process system in EDs. Patie