https://www.selleckchem.com/products/sodium-cholate.html The widespread prevalence of coronavirus disease-2019 (COVID-19) which is caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has resulted in a severe global public health emergency. However, there are no sensitive biomarkers to predict the disease prognosis of COVID-19 patients. Here, we have identified interleukin-8 (IL-8) as a biomarker candidate to predict different disease severity and prognosis of COVID-19 patients. While serum IL-6 become obviously elevated in severe COVID-19 patients, serum IL-8 was easily detectible in COVID-19 patients with mild syndromes. Furthermore, lL-8 levels correlated better than IL-6 levels with the overall clinical disease scores at different stages of the same COVID-19 patients. Thus, our studies suggest that IL-6 and IL-8 can be respectively used as biomarkers for severe COVID-19 patients and for COVID-19 disease prognosis.EMR2/ADGRE2 is an adhesion G protein-coupled receptor differentially expressed by human myeloid cells. It modulates diverse cellular functions of innate immune cells and a missense EMR2 variant is directly responsible for vibratory urticaria. Recently, EMR2 was found to activate NLRP3 inflammasome in monocytes via interaction with FHR1, a regulatory protein of complement Factor H. However, the functional involvement of EMR2 activation and its signaling mechanisms in eliciting NLRP3 inflammasome activation remain elusive. In this study, we show that EMR2-mediated signaling plays a critical role in triggering the activation (2nd) signal for the NLRP3 inflammasome in both THP-1 monocytic cell line and primary monocytes. Stimulation of EMR2 by its agonistic 2A1 monoclonal antibody elicits a Gα16-dependent PLC-β activation pathway, inducing the activity of downstream Akt, MAPK, NF-κB, and Ca2+ mobilization, eventually leading to K+ efflux. These results identify EMR2 and its associated signaling intermediates as potential intervention