https://www.selleckchem.com/products/ABT-263.html N6 -methyladenosine (m6 A) modification of mRNA mediates diverse cellular and viral functions. Infection with Epstein-Barr virus (EBV) is causally associated with nasopharyngeal carcinoma (NPC), 10% of gastric carcinoma, and various B-cell lymphomas, in which the viral latent and lytic phases both play vital roles. Here, we show that EBV transcripts exhibit differential m6 A modification in human NPC biopsies, patient-derived xenograft tissues, and cells at different EBV infection stages. m6 A-modified EBV transcripts are recognized and destabilized by the YTHDF1 protein, which leads to the m6 A-dependent suppression of EBV infection and replication. Mechanistically, YTHDF1 hastens viral RNA decapping and mediates RNA decay by recruiting RNA degradation complexes, including ZAP, DDX17, and DCP2, thereby post-transcriptionally downregulating the expression of EBV genes. Taken together, our results reveal the critical roles of m6 A modifications and their reader YTHDF1 in EBV replication. These findings contribute novel targets for the treatment of EBV-associated cancers.MicroRNAs that modulate transcription can regulate other microRNAs and are also up-regulated under pathological stress. MicroRNA-499 (miR-499), microRNA-208a (miR-208a) and B-cell lymphoma 2 (Bcl-2) play roles in cardiovascular diseases, such as direct reprogramming of cardiac fibroblast into cardiomyocyte and cardiomyocyte apoptosis. Whether miR208a, miR499 and Bcl-2 were critical regulators in cardiac fibroblast apoptosis under mechanical stretching conditions in human cardiac fibroblasts-adult atrial (HCF-aa) was investigated. Using negative pressure, HCF-aa grown on a flexible membrane base were cyclically stretched to 20% of their maximum elongation. In adult rats, an aortocaval shunt was used to create an in vivo model of volume overload. MiR208a was up-regulated early by stretching and returned to normal levels with longer stretching cycles, whe