Furthermore, the prepared FAPbBr3/PVDF composite was found to be an efficient candidate for light detection applications. A simple planar photodetector was fabricated with the 8.0 wt% FAPbBr3 NP-loaded PVDF composite, which displayed very high responsivity (8 A/W) and response speed of 2.6 s. Thus, this exclusive combination of synthesis and fabrication for the preparation of electro-active films opens a new horizon in the piezoelectric community for effective energy harvesting and light detector applications.Organic phototheranostic nanomedicines with an optimized near-infrared (NIR) biological transparent window (700-900 nm) are highly desirable for the diagnosis and treatment of deep-seated tumors in clinic. As excellent organic photosensitizers for photodynamic therapy (PDT) with outstanding photo- and thermo-stability, phthalocyanines (Pcs) have been used as the building blocks of single-component nanomedicines. However, to the best of our knowledge, all the Pc-based single-component self-assemblies reported to date are of an H-aggregate nature. This results in the simultaneous self-quenching of fluorescence emission and photodynamic activity as well as greatly reduced tissue penetration due to blue-shifted absorption. In the present work, intramolecular hydrogen bonding was formed between the two long and flexible axial NH2-terminated diethylene glycol ligands of the amphiphilic SiPc molecule (SiPc-NH2) in solution, leading to the employment of a cis-conformation of this molecule according to the 1H-NMR spectroscopy result, which as a building block then further self-assembled into monodisperse nanospheres (SiPcNano) with a J-aggregation nature on the basis of electronic absorption spectroscopic results. As a result, SiPcNano exhibited significantly enhanced red-shifted absorption in the NIR range of 750-850 nm and fluorescence emission. This in combination with the increased photodynamic effect for SiPcNano triggered by the protonation of amine groups due to the acidic nature of tumors endowed effective synergistic NIR photodynamic and photothermal effects in different cancer cells and thus effective inhibition of tumor growth in A549 tumor-bearing mice on the basis of a series of in vitro and in vivo evaluations. The present result provides a new approach for constructing novel single-component NIR organic nanomedicines for multifunctional cancer therapy.Xylarilongipins A (1) and B (2), two diterpenes each with an unusual cage-like bicyclo[2.2.2]octane moiety, along with their biosynthetic precursor hymatoxin L (3), were isolated from the culture broth of the fungicolous fungus Xylaria longipes HFG1018 inhabiting in the medicinal fungus Fomitopsis betulinus. The structures and absolute configurations of the three compounds were established by extensive spectroscopic analysis and single-crystal X-ray diffraction analysis. Xylarilongipin A (1) displayed moderate inhibitory activity against the cell proliferation of concanavalin A-induced T lymphocytes and lipopolysaccharide-induced B lymphocytes with IC50 values of 13.6 and 22.4 μM, respectively. https://www.selleckchem.com/products/Vorinostat-saha.html Additionally, the biosynthetic pathways for compounds 1-3 are discussed. This work not only corroborates the structure of the 9,16-cyclo-(18-nor-)isopimarane skeleton by single-crystal X-ray diffraction analysis for the first time, but also provides new insights into the biosynthetic origin of the unusual diterpene skeletons.We report on our initial results from a systematic effort to implement electron-withdrawing protecting groups and Lewis basic solvents/additives as an approach to 1,2-cis(α)-selective O-glucosylation. 1,2-cis-Selective O-glucosylations are reported with thioglucosides and glucosyl trichloroacetimidates and a range of acceptors. A correlation between electron-withdrawing effects and 1,2-cis selectivity has been established. This phenomenon may prove to be broadly applicable in the area of chemical O-glycosylation.A simple and efficient method was developed for the synthesis of substituted naphtho[1,2-b]benzofuran-7(8H)-ones based on the photorearrangement reaction of 4H-chromen-4-one derivatives. The studied reaction includes the photocyclization of the hexatriene system, [1,9]-H-sigmatropic rearrangement and heterocyclic ring opening. The starting terarylenes were prepared via a new three-component tandem condensation of 3-(dimethylamino)-1-(2-hydroxyaryl)prop-2-en-1-ones, arylglyoxals and cyclic 1,3-diketones.A highly regioselective, carbazole based Electron Donor Acceptor (EDA) catalyzed synthesis of biaryl and aryl-heteroaryl compounds is described. Various indole and carbazole derivatives were screened for the Homolytic Aromatic Substitution (HAS) reaction. Tetrahydrocarbazole (THC) was very efficient for the HAS transformation and proceeded via a complex formation between diazonium salt and electron rich tetrahydrocarbazole. The UV-Vis spectroscopy technique has been used to confirm the complex formation. The in situ generated EDA complex even in a catalytic amount is found to be efficient for the Single Electron Transfer (SET) process without any photoactivation. Biaryl compounds, 2-phenylfuran, 2-phenylthiophene, and 2-phenylpyrrole and bioactive compounds such as dantrolene and canagliflozin have been synthesized in moderate to excellent yields.Separation of nano/microparticles based on surface acoustic waves (SAWs) has shown great promise for biological, chemical, and medical applications ranging from sample purification to cancer diagnosis. However, the permanent bonding of a microchannel onto relatively expensive piezoelectric substrates and excitation transducers renders the SAW separation devices non-disposable. This limitation not only requires cumbersome cleaning and increased labor and material costs, but also leads to cross-contamination, preventing their implementation in many biological, chemical, and medical applications. Here, we demonstrate a high-performance, disposable acoustofluidic platform for nano/microparticle separation. Leveraging unidirectional interdigital transducers (IDTs), a hybrid channel design with hard/soft materials, and tilted-angle standing SAWs (taSSAWs), our disposable acoustofluidic devices achieve acoustic radiation forces comparable to those generated by existing permanently bonded, non-disposable devices. Our disposable devices can separate not only microparticles but also nanoparticles.