https://www.selleckchem.com/products/17-AAG(Geldanamycin).html The breakdown of interaction energy has always been a very important means to understand chemical bonding and it has become a seamlessly useful tool for modern supramolecular chemistry. Many interaction schemes and partitioning methods are known and widely adopted. Their common mechanism is the fragmentation of a chemical system into smaller moieties and the identification of interaction energy contributions somewhat related to a physical phenomenon. However, the definitions of energy terms and of the molecular fragments are not universal, leading to complicated comparisons among different approaches and controversial interpretations. The most adopted methodologies use a partition of the Hilbert space or of the position space. In this paper, we propose a protocol to compare energy decomposition methods based on two schemes representative of each category, namely the energy decomposition analysis (EDA, Hilbert space) and the interacting quantum atom (IQA, position space).Finger millet (FM) and kodo millet (KM) are known for their multiple health benefits. Several studies have indicated the antioxidant and hypoglycemic potential of polyphenol rich extracts (PREs) from them. However, the protective roles of PREs from these millets in overcoming high-fat diet (HFD)-induced obesity have not yet been investigated. This study aimed to identify the polyphenols in FM-PREs and KM-PREs using HPLC-DAD/ESI-MS, and to evaluate the role of PREs in mitigating lipopolysaccharide induced inflammation in murine macrophage cells and in the reduction of HFD-induced metabolic complications using male Swiss albino mice. The results suggested that KM-PRE had higher polyphenol content than FM-PRE, of which taxifolin (98%) and catechin (86.6%) were the major fractions respectively. FM-PRE and KM-PRE prevented obesity, however, KM-PRE was more profound in preventing weight gain, adipose tissue hypertrophy, hepatic steatosis, and s