n research on early development in NGS.Background Inferring diseases related to the patient's electronic medical records (EMRs) is of great significance for assisting doctor diagnosis. Several recent prediction methods have shown that deep learning-based methods can learn the deep and complex information contained in EMRs. However, they do not consider the discriminative contributions of different phrases and words. Moreover, local information and context information of EMRs should be deeply integrated. Results A new method based on the fusion of a convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with attention mechanisms is proposed for predicting a disease related to a given EMR, and it is referred to as FCNBLA. FCNBLA deeply integrates local information, context information of the word sequence and more informative phrases and words. A novel framework based on deep learning is developed to learn the local representation, the context representation and the combination representation. The left side of the framework is constructed based on CNN to learn the local representation of adjacent words. The right side of the framework based on BiLSTM focuses on learning the context representation of the word sequence. Not all phrases and words contribute equally to the representation of an EMR meaning. Therefore, we establish the attention mechanisms at the phrase level and word level, and the middle module of the framework learns the combination representation of the enhanced phrases and words. The macro average f-score and accuracy of FCNBLA achieved 91.29 and 92.78%, respectively. Conclusion The experimental results indicate that FCNBLA yields superior performance compared with several state-of-the-art methods. The attention mechanisms and combination representations are also confirmed to be helpful for improving FCNBLA's prediction performance. Our method is helpful for assisting doctors in diagnosing diseases in patients.Background The grain yield of cereals is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood. https://www.selleckchem.com/products/GDC-0449.html Therefore, a field experiment was performed in wheat to investigate the responses of flag leaves and grains to sink/source manipulations. Results Half-degraining delayed but partial defoliation enhanced leaf senescence. Sink/source manipulations influenced the content of reactive oxygen species in the flag leaf and the concentration of phytohormones, including cytokinins, indoleacetic 3-acid and jasmonic acid, in the flag leaves (LDef) and grains (GDef) in defoliated plants and flag leaves (LDG) and grain (GDG) in de-grained plants. Isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomic analysis indicated that at 16 days after manipulation, a total of 97 and 59 differentially expressed proteins (DEPs) from various functional categories were observed in the LDG and LDef groups, respeain compounds; stress resistance; and leaf senescence and thus influence grain mass.Background In animals, many factors affect the small intestinal function and cecal microorganisms, including body weight and genetic background. However, whether paternal weight impacts the small intestinal function and cecal microorganisms remains unknown to date. The current study used Nonghua sheldrake to estimate the effect of paternal weight on the intestine of the offspring by evaluating differences in small intestinal morphology, digestive enzyme activity, and cecal microorganisms between the offspring of male parents with high body weight (group H) and that of male parents with low body weight (group L). Results The results of the analysis of small intestinal morphology showed that the villus height of the jejunum of group H ducks was higher than that of group L ducks, and the difference was significant for ducks at 10 weeks of age. Moreover, the villus height/crypt depth of the duodenum in group H significantly exceeded that of group L at a duck age of 2 weeks. The amylase activity in the jejunum content of group H exceeded that of group L at 5 and 10 weeks of age. Furthermore, the proportion of the Firmicutes to Bacteroidetes was significantly higher in group H (duck age of 2 weeks). Among the genera with a relative abundance exceeding 1%, the relative abundances of genera Desulfovibrio, Megamonas, Alistipes, Faecalibacterium, and Streptococcus observed in group H were significantly different between group H and group L. Conclusions For the first time, this study identifies the effect of paternal weight on offspring small intestinal function and cecal microorganisms. Consequently, this lays a foundation for further research on the relationship between male parents and offspring intestinal function.The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve, to a broader field of young scientists.Background Fungi constitute an important yet frequently neglected component of the human microbiota with a possible role in health and disease. Fungi and bacteria colonise the infant gastrointestinal tract in parallel, yet most infant microbiome studies have ignored fungi. Milk is a source of diverse and viable bacteria, but few studies have assessed the diversity of fungi in human milk. Results Here we profiled mycobiota in milk from 271 mothers in the CHILD birth cohort and detected fungi in 58 (21.4%). Samples containing detectable fungi were dominated by Candida, Alternaria, and Rhodotorula, and had lower concentrations of two human milk oligosaccharides (disialyllacto-N-tetraose and lacto-N-hexaose). The presence of milk fungi was associated with multiple outdoor environmental features (city, population density, and season), maternal atopy, and early-life antibiotic exposure. In addition, despite a strong positive correlation between bacterial and fungal richness, there was a co-exclusion pattern between the most abundant fungus (Candida) and most of the core bacterial genera.