https://www.selleckchem.com/products/elafibranor.html Our results indicated that IpPCS1 has certain potential application value in Cd tolerance and detoxification, therefore provides a useful genetic resource for enhancing Cd tolerance and improving the Cd phytoremediation capacity of plants or organisms. In addition, our research is the first time to discover a new possible Cd activation site in the C-terminal of IpPCS1.The current rapid increase in the world population is a global issue necessitating an increase in crop productivity. Fertilizers are necessary for enhancing the growth and productivity of plants, but are potential environmental pollutants when they persist in the soil. The transcription factor-encoding gene RDD1 plays a role in improving the uptake and accumulation of various nutrient ions and increasing grain productivity in rice. This study shows that RDD1 functions to promote photosynthetic activity under ambient and high CO2 conditions as well as the translocation of sucrose and glutamine, which are known as translocating substances for carbon and nitrogen, respectively. Moreover, shoot weight was increased in RDD1-overexpressing plants under high CO2 conditions. Metabolite analysis showed that amino acid levels in source tissues were lower, and carbohydrate levels from glycolysis and the pentose phosphate pathway in sink tissues were higher, in the RDD1-overexpressing plants than in wild-type plants, indicating improved carbon and nitrogen translocation from source tissues in the RDD1-overexpressing plants. These results suggest that it would be possible to utilize the effects of RDD1 on carbon and nitrogen translocation and photosynthesis to sustainably increase crop productivity under elevated atmospheric CO2 conditions.CD4 T cells play a major role to orchestrate the immune response. Upon activation, CD4 T cells differentiate into effector T cell (Teff) or regulatory T cell (Treg) subsets that promote or suppress the immune response, respect