https://www.selleckchem.com/products/fht-1015.html The simulation results indicate that the proposed VLDA method has better acquisition sensitivity than traditional non-coherent integration method under the same calculation amount. The VLDA method only requires approximately 27.5% of calculations to achieve the same acquisition sensitivity (35 dBHz). What is more, the actual experimental results verify the feasibility of the VLDA method. It can be concluded that the proposed approach is an effective and feasible method for solving the bit sign transition problem.With the advent of cloud computing and wireless sensor networks, the number of cyberattacks has rapidly increased. Therefore, the proportionate security of networks has become a challenge for organizations. Information security advisors of organizations face difficult and complex decisions in the evaluation and selection of information security controls that permit the defense of their resources and assets. Information security controls must be selected based on an appropriate level of security. However, their selection needs intensive investigation regarding vulnerabilities, risks, and threats prevailing in the organization as well as consideration of the implementation, mitigation, and budgetary constraints of the organization. The goal of this paper was to improve the information security control analysis method by proposing a formalized approach, i.e., fuzzy Analytical Hierarchy Process (AHP). This approach was used to prioritize and select the most relevant set of information security controls to satisfy the information security requirements of an organization. We argue that the prioritization of the information security controls using fuzzy AHP leads to an efficient and cost-effective assessment and evaluation of information security controls for an organization in order to select the most appropriate ones. The proposed formalized approach and prioritization processes are based on International Organiz