https://www.selleckchem.com/products/LY335979.html The goodness of fit for the competing models was established through fit indices and confirmed the previously established domains. Adequate internal consistency was found for each of the subscales as well as the overall scale.The development of high resolution SAR makes the influence of moving target more prominent, which results in defocusing and other unexplained phenomena. This paper focuses on the research of imaging signatures and velocity estimation of turning motion targets. In this paper, the turning motion is regarded as the straight line motion of continuous change of moving direction. Through the analysis of the straight line motion with constant velocity and the geometric modeling of the turning motion in spaceborne SAR, the imaging signatures of the turning motion target are obtained, such as the broken line phenomenon at the curve. Furthermore, a method for estimating the turning velocity is proposed here. The radial velocity is calculated by the azimuth offset of the turning motion target and the azimuth velocity is calculated by the phase error compensated in the refocusing process. The amplitude and direction of the velocity can be obtained by using both of them. The results of simulation and GF-3 data prove the accuracy of the analysis of turning motion imaging signatures, and they also show the accuracy and validity of the velocity estimation method in this paper.In recent years, human activity recognition has become a hot topic inside the scientific community. The reason to be under the spotlight is its direct application in multiple domains, like healthcare or fitness. Additionally, the current worldwide use of smartphones makes it particularly easy to get this kind of data from people in a non-intrusive and cheaper way, without the need for other wearables. In this paper, we introduce our orientation-independent, placement-independent and subject-independent human activity recognition dataset.