The COVID-19 pandemic significantly impacted the labor market and multiple aspects of work and workers' life. The present rapid review analyzes this impact considering the effects that COVID-19 pandemic had on employment and work-related aspects across different age groups. https://www.selleckchem.com/products/ly2157299.html A comprehensive literature search was performed on scientific contributions published between 2019 and March 2021, resulting in 36 papers pertinent to the scope of this review. Findings were grouped according to different topics, all linked to age occupational risk, implications on the labor market (i.e., job loss and reemployment, job insecurity, turnover intentions and retirement, and healthcare workers' return-to-work phase), remote work, and key individual and organizational resources and strategies. Overall, the review revealed variability across age groups in the impact this pandemic had on employment and several work-related aspects (i.e., occupational risk, remote work). Findings supported an age-differential effect of normative history-graded events such as the current pandemic, highlighting different responses and consequences depending on workers' age.A serosurvey of IgG antibodies against SARS-CoV-2 was conducted in Greece between May and August 2020. It was designed as a cross-sectional survey and was repeated at monthly intervals. The leftover sampling methodology was used and a geographically stratified sampling plan was applied. Of 20,110 serum samples collected, 89 (0.44%) were found to be positive for anti-SARS-CoV-2 antibodies, with higher seroprevalence (0.35%) observed in May 2020. The highest seroprevalence was primarily observed in the "30-49" year age group. Females presented higher seroprevalence compared to males in May 2020 (females 0.58% VS males 0.10%). This difference reversed during the study period and males presented a higher proportion in August 2020 (females 0.12% VS males 0.58%). Differences in the rate of seropositivity between urban areas and the rest of the country were also observed during the study period. The four-month infection fatality rate (IFR) was estimated to be 0.47%, while the respective case fatality rate (CFR) was at 1.89%. Our findings confirm low seroprevalence of COVID-19 in Greece during the study period. The young adults are presented as the most affected age group. The loss of the cumulative effect of seropositivity in a proportion of previous SARS-CoV-2 infections was indicated.(1) Background In resource-limited countries, patients with tuberculosis (TB)/HIV coinfection commonly face economic, sociocultural, and behavioral barriers to effective treatment. These barriers manifest from low treatment literacy, poverty, gender inequality, malnutrition, societal stigmas regarding HIV, and an absence of available care. It is critical for intervention programs to understand and assist in overcoming these barriers and any additional risks encountered by patients with TB/HIV coinfection. This study analyzes variation in TB/HIV coinfection and risks of negative outcomes among patients with TB/HIV coinfection compared to those without coinfection. (2) Methods This quantitative study used data from 49,460 patients receiving ART from 241 HIV/AIDS clinics in Haut-Katanga and Kinshasa, two provinces in the Democratic Republic of Congo. Chi-square and logistic regression analysis were performed. (3) Results Significantly higher proportions of patients with TB/HIV coinfection were men (4.5%; women, 3.3%), were new patients (3.7%; transferred-in, 1.6%), resided in the Kinshasa province (4.0%; Haut-Katanga, 2.7%), and were in an urban health zone (3.9%) or semi-rural health zone (3.1%; rural, 1.2%). Logistic regression analysis showed that after controlling for demographic and clinical variables, TB/HIV coinfection increased the risk of death (adjusted odds ratio (AOR), 2.26 (95% confidence interval (CI) 1.94-2.64)) and LTFU (AOR, 2.06 (95% CI 1.82-2.34)). TB/HIV coinfection decreased the odds of viral load suppression (AOR, 0.58 (95% CI 0.46-0.74)). (4) Conclusions TB/HIV coinfection raises the risk of negative outcomes such as death, LTFU, and lack of viral load suppression. Our findings can help HIV clinics in Democratic Republic of Congo and other African countries to customize their interventions to improve HIV care and reduce care disparities among patients.With the extensive application of robots, such as unmanned aerial vehicle (UAV) in exploring unknown environments, visual odometry (VO) algorithms have played an increasingly important role. The environments are diverse, not always textured, or low-textured with insufficient features, making them challenging for mainstream VO. However, for low-texture environment, due to the structural characteristics of man-made scene, the lines are usually abundant. In this paper, we propose a virtual-real hybrid map based monocular visual odometry algorithm. The core idea is that we reprocess line segment features to generate the virtual intersection matching points, which can be used to build the virtual map. Introducing virtual map can improve the stability of the visual odometry algorithm in low-texture environment. Specifically, we first combine unparallel matched line segments to generate virtual intersection matching points, then, based on the virtual intersection matching points, we triangulate to get a virtual map, combined with the real map built upon the ordinary point features to form a virtual-real hybrid 3D map. Finally, using the hybrid map, the continuous camera pose estimation can be solved. Extensive experimental results have demonstrated the robustness and effectiveness of the proposed method in various low-texture scenes.Base-catalyzed depolymerization of black liquor retentate (BLR) from the kraft pulping process, followed by ultrafiltration, has been suggested as a means of obtaining low-molecular-weight (LMW) compounds. The chemical complexity of BLR, which consists of a mixture of softwood and hardwood lignin that has undergone several kinds of treatment, leads to a complex mixture of LMW compounds, making the separation of components for the formation of value-added chemicals more difficult. Identifying the phenolic compounds in the LMW fractions obtained under different depolymerization conditions is essential for the upgrading process. In this study, a state-of-the-art nontargeted analysis method using ultra-high-performance supercritical fluid chromatography coupled to high-resolution multiple-stage tandem mass spectrometry (UHPSFC/HRMSn) combined with a Kendrick mass defect-based classification model was applied to analyze the monomers and oligomers in the LMW fractions separated from BLR samples depolymerized at 170-210 °C.