This is followed by viscoelastic wave propagation analysis. Regarding the important role of the suture geometry, which is the focus of this work, the results from the elastic analyses revealed the nature of the reduction in wave speeds and amplitudes, both qualitatively and quantitatively, in such waveguides, and their dependence on the orientation and magnitude of the sinusoidal depth variation. Some waveguide configurations with remarkable wave attenuation characteristics, in terms of both wave speeds and amplitudes, are presented, along with their implications regarding impact mitigation applications.Density-functional theory (DFT) requires an extra variable besides the electron density in order to properly incorporate magnetic-field effects. In a time-dependent setting, the gauge-invariant, total current density takes that role. A peculiar feature of the static ground-state setting is, however, that the gauge-dependent paramagnetic current density appears as the additional variable instead. An alternative, exact reformulation in terms of the total current density has long been sought but to date a work by Diener is the only available candidate. In that work, an unorthodox variational principle was used to establish a ground-state DFT of the total current density as well as an accompanying Hohenberg-Kohn-like result. We here reinterpret and clarify Diener's formulation based on a maximin variational principle. Using simple facts about convexity implied by the resulting variational expressions, we prove that Diener's formulation is unfortunately not capable of reproducing the correct ground-state energy and, furthermore, that the suggested construction of a Hohenberg-Kohn map contains an irreparable mistake.By including the effect of a trap with characteristic energy given by the Fermi temperatureTFin a two-body two-channel model for Feshbach resonances, we reproduce the measured binding energy of ultracold molecules in a40K atomic Fermi gas. We also reproduce the experimental closed-channel fractionZacross the BEC-BCS crossover and into the BCS regime of a6Li atomic Fermi gas. We obtain the expected behaviorZ∝TFat unitarity, together with the recently measured proportionality constant. Our results are also in agreement with recent measurements of theZdependency onTFon the BCS side, where a significant quantitative discrepancy between experimental data and theory's predictions has been repeatedly reported. In order to contrast with future experiments we report the proportionality constant at unitarity betweenZandTFpredicted by our model for a40K atomic Fermi gas.Based on a mean-field description of thermodynamic cyclic voltammograms (CVs), we analyze here in full generality, how CV peak positions and shapes are related to the underlying interface energetics, in particular when also including electrostatic double layer (DL) effects. We show in particular, how non-Nernstian behaviour is related to capacitive DL charging, and how this relates to common adsorbate-centered interpretations such as a changed adsorption energetics due to dipole-field interactions and the electrosorption valency - the number of exchanged electrons upon electrosorption per adsorbate. Using Ag(111) in halide-containing solutions as test case, we demonstrate that DL effects can introduce peak shifts that are already explained by rationalizing the interaction of isolated adsorbates with the interfacial fields, while alterations of the peak shape are mainly driven by the coverage-dependence of the adsorbate dipoles. In addition, we analyze in detail how changing the experimental conditions such as the ion concentrations in the solvent but also of the background electrolyte can affect the CV peaks via their impact on the potential drop in the DL and the DL capacitance, respectively. These results suggest new routes to analyze experimental CVs and use of those for a detailed assessment of the accuracy of atomistic models of electrified interfaces e.g. with and without explicitly treated interfacial solvent and/or approximate implicit solvent models.During thyroid surgery, some parathyroid glands fail to maintain their function, therefore, they are unavoidably detached from the patient. For the purpose of re-preservation of the function, they are minced into small segments and transplanted into the fat or muscle layer. Yet, this method of auto-grafting the parathyroid glands is frequently unsuccessful due to its poor interaction and engraftment with the native tissue, eventually leading to the dysfunction of the parathyroid hormone (PTH) secretion. https://www.selleckchem.com/products/lipofermata.html In this study, we suggest a methodology to restore parathyroid activity through the introduction of the 'tissue printing' concept. Parathyroid glands of patients with secondary hyperparathyroidism were minced into the fragments smaller than 0.5 × 0.5 mm, which is in common with the traditional surgical method. These parathyroid tissues (PTs) were uniformly mixed with the adipose-derived decellularized extracellular matrix (adECM) bioink that protects the PTs from hostilein vivoenvironments and promote initial engraftment. PTs-encapsulated adECM bioink (PTs-adECM) was then printed onto the pre-designed polycaprolactone (PCL) mesh to produce patch-type PTs construct, which functions as a mechanical support to further enhance long-termin vivostability. The engineered patch was transplanted subcutaneously into rats and harvested after 4 weeks.In vivoresults showed that the engineered patches were well engrafted and stabilized in their original position for 4 weeks as compared with PTs only. Immunohistochemistry results further revealed that the concentration of PTH was approximately 2.5-fold greater in rats engrafted in the patch. Taken together, we envision that the novel concept 'tissue printing' over cell printing could provide a closer step towards clinical applications of 3D bioprinting to solve the unmet need for parathyroid surgery method.Flexible photodetectors functionalized by transition metal dichalcogenides have attracted great attention due to their excellent photo-harvesting efficiency. However, the field of optoelectronics still requires advancement in the production of large-area, broad band and flexible photodetectors. Here we report a flexible, stable, broad band and fast photodetector based on a MoS2/WSe2heterostructure on ordinary photocopy paper with pencil-drawn graphite electrodes. Ultrathin MoS2/WSe2nanohybrids have been synthesized by an ultrahigh yield liquid-phase exfoliation technique. The thin sheets of WSe2, and MoS2contain two to four layers with a highly c-oriented crystalline structure. Subsequently, the photodetector was exploited under ultra-broad spectral range from 400 to 780 nm. The photodetector exhibits excellent figure of merit such as on/off ratio of the order of 103, photoresponsivity of 124 mA W-1and external quantum efficiency of 23.1%. Encouragingly, rise/decay time of about 0.1/0.3 s was realized, which is better than in previous reports on paper-based devices.