https://www.selleckchem.com/products/ipi-549.html This study may also help in understanding the coupling between structure and function in other animal models as well as in humans.The crystalline lens is an important optical element in the eye, responsible for focusing, and which experiences significant changes throughout life. The shape of the lens is usually studied only in the optical area (central 4 to 6 mm). However, for a great number of applications, a description of the full shape of the crystalline lens is required. We propose a new method for the representation of the full shape of the crystalline lens, constructed from 3-dimensional optical coherence tomography images of 133 isolated crystalline lenses (0-71 y/o), which we have called eigenlenses. The method is shown to be compact and accurate to describe not only the full shape of the crystalline lens, but also the optical zone in comparison with other methods. We also demonstrate its application to the extrapolation of the full shape of the crystalline lens from in-vivo optical images of the anterior segment of the eye, where only the central part of the lens visible through the pupil is available, and in the generation (synthesis) of realistic full lenses of a given age. The method has critical applications, among others, in improving and evaluating myopia and presbyopia treatments.Zebrafish are an important animal model, whose structure and function information can be used to study development, pathologic changes and genetic mutations. However, limited by the penetration depth, the available optical methods are difficult to image the whole-body zebrafish in juvenile and adult stages. Based on a home-made high-resolution polarization-sensitive optical coherence tomography (PS-OCT) system, we finished in vivo volumetric imaging for zebrafish, and various muscles can be clearly discerned by scanning from dorsal, ventral, and lateral directions. Besides structure information, polarization properties extra