https://www.selleckchem.com/products/PD-0325901.html 2 times higher than that of the large FOVs. We successfully performed a Monte-Carlo simulation using a step-and-shoot method and estimated the effective dose in CBCT. Our findings indicate that simulation with 5° or 10° is acceptable based on the FOV size, while a small multiple FOV scan is recommended from a radiation protection viewpoint. We successfully performed a Monte-Carlo simulation using a step-and-shoot method and estimated the effective dose in CBCT. Our findings indicate that simulation with 5° or 10° is acceptable based on the FOV size, while a small multiple FOV scan is recommended from a radiation protection viewpoint.Purpose Simulation is a tool commonly used in the clinical training of students within the health professions fields, such as medicine and nursing. The effectiveness of simulation as a teaching technique has been extensively documented in numerous health care professions; however, little is known about the effectiveness of simulation techniques in audiology education. This study assesses the effectiveness of a simulation activity focused on auditory brainstem response (ABR) testing conducted with students of an applied doctoral program in audiology. Method Twelve 2nd year audiology graduate students enrolled in the auditory electrophysiology course at Towson University in Fall 2018 participated in this pre-post study. Over a 3-week period, each student (a) received didactic instruction in ABR testing, (b) underwent a presimulation exercise skills assessment, (c) participated in a simulation exercise, and (d) underwent a postsimulation exercise skills assessment. Results Significant improvements were observed in clinical skill level for the ABR tasks evaluated in terms of both accuracy and efficiency (time in seconds needed to complete the task). The tasks evaluated included skin preparation, identification of scalp electrode placement sites, and scalp electrode placement in a variety o