https://www.selleckchem.com/products/LY2603618-IC-83.html Unusually high exciton binding energies (BEs), as much as ∼1 eV in monolayer transition-metal dichalcogenides, provide opportunities for exploring exotic and stable excitonic many-body effects. These include many-body neutral excitons, trions, biexcitons, and defect-induced excitons at room temperature, rarely realized in bulk materials. Nevertheless, the defect-induced trions correlated with charge screening have never been observed, and the corresponding BEs remain unknown. Here we report defect-induced A-trions and B-trions in monolayer tungsten disulfide (WS2) via carrier screening engineering with photogenerated carrier modulation, external doping, and substrate scattering. Defect-induced trions strongly couple with inherent SiO2 hole traps under high photocarrier densities and become more prominent in rhenium-doped WS2. The absence of defect-induced trion peaks was confirmed using a trap-free hexagonal boron nitride substrate, regardless of power density. Moreover, many-body excitonic charge states and their BEs were compared via carrier screening engineering at room temperature. The highest BE was observed in the defect-induced A-trion state (∼214 meV), comparably higher than the trion (209 meV) and neutral exciton (174 meV), and further tuned by external photoinduced carrier density control. This investigation allows us to demonstrate defect-induced trion BE localization via spatial BE mapping in the monolayer WS2 midflake regions distinctive from the flake edges.The ability to track extracellular vesicles (EVs) in vivo without influencing their biodistribution is a key requirement for their successful development as drug delivery vehicles and therapeutic agents. Here, we evaluated the effect of five different optical and nuclear tracers on the in vivo biodistribution of EVs. Expi293F EVs were labeled using either a noncovalent fluorescent dye DiR, or covalent modification with 111indium-DTPA, or bioe