https://www.selleckchem.com/products/sodium-hydroxide.html We compute three-loop corrections to the relation between the heavy quark masses defined in the pole and kinetic schemes. Using known relations between the pole and MS[over ¯] quark masses, we can establish precise relations between the kinetic and MS[over ¯] charm and bottom masses. As compared to two loops, the precision is improved by a factor of 2 to 3. Our results constitute important ingredients for the precise determination of the Cabibbo-Kobayashi-Maskawa matrix element |V_cb| at Belle II.For most chiralities, semiconducting nanotubes display topologically protected end states of multiple degeneracies. We demonstrate using density matrix renormalization group based quantum chemistry tools that the presence of Coulomb interactions induces the formation of robust end spins. These are the close analogs of ferromagnetic edge states emerging in graphene nanoribbons. The interaction between the two ends is sensitive to the length of the nanotube, its dielectric constant, and the size of the end spins for S=1/2 end spins, their interaction is antiferromagnetic, while for S>1/2, it changes from antiferromagnetic to ferromagnetic as the nanotube length increases. The interaction between end spins can be controlled by changing the dielectric constant of the environment, thereby providing a possible platform for two-spin quantum manipulations.The high temperature and electron degeneracy attained during a supernova allow for the formation of a large muon abundance within the core of the resulting protoneutron star. If new pseudoscalar degrees of freedom have large couplings to the muon, they can be produced by this muon abundance and contribute to the cooling of the star. By generating the largest collection of supernova simulations with muons to date, we show that observations of the cooling rate of SN 1987A place strong constraints on the coupling of axionlike particles to muons, limiting the coupling to g_aμ