https://www.selleckchem.com/B-Raf.html Control over particulate matter (PM) emission from grilling is required for improving public health and air quality. The performance of mirror-symmetrical multi-compartment scrubbers with an upflow (U-type) and downflow baffle (D-type) configuration was evaluated for PM emission control from grilling at a flow rate of 30 m3 min-1. The PM removal efficiency of the U-type scrubber was the highest when the water level was 8 cm (95.6%), and the pressure drops recorded at the water levels of 6, 8 and 10 cm were 103, 122 and 153 mmH2O, respectively. Although PM removal efficiency of the D-type scrubber was over 91.0% at the water levels of 8, 10 and 12 cm, the pressure drops were 124, 142 and 185 mmH2O, respectively. A comprehensive evaluation of the water volume, pressure drop and PM removal performance, as well as device size, revealed that the U-type scrubber with a PM removal efficiency of 92% or higher and a pressure drop of 122 mmH2O or lower at the water levels of 6-8 cm was more economical for removing PM from grilling gas than the D-type scrubber.Acinetobacter baumanniitriggers autophagy, affects the degradation of autophagy, and causes severe inflammatory injury. LncRNA growth arrest-specific transcript 5 (LncRNA-GAS5) and Yin and Yang 1 (YY1) are known to play an important role in the regulation of autophagy, however, the precise role of LncRNA-GAS5 and YY1 in the damage to autophagy caused by Acinetobacter baumanniiremains unclear. The aim of this study was to investigate the role of LncRNA-GAS5 and YY1 in the regulation of autophagy induced by Acinetobacter baumannii. We found that LncRNA-GAS5 was up-regulated following infection with Acinetobacter baumannii, thus resulting in the degradation of STX17, autophagy disorders, and the aggravated replication of Acinetobacter baumannii. We also analyzed the mechanism of interaction between LncRNA-GAS5 and YY1 and found that YY1 regulated its expression in a negative manner by