https://www.selleckchem.com/products/bi-3812.html Multisensory processing is a prevalent research issue. However, multisensory working memory research has received inadequate attention. The present study aimed to investigate the behavioral performance of an audiovisual working memory task and its association with resting-state functional magnetic resonance imaging (fMRI) regional homogeneity (ReHo). A total of 128 healthy participants were enrolled in this study. The participants completed a modified Sternberg working memory task using complex auditory and visual objects as materials involved in different encoding conditions, including semantically congruent audiovisual, semantically incongruent audiovisual, and single modality of auditory or visual object encoding. Two subgroups received resting-state fMRI scans according to their behavioral performances. The results showed that the semantically congruent audiovisual object encoding sped up the later unisensory memory recognition in this task. Moreover, the high behavioral performance (response time, RT) group showed increased ReHo in the executive control network (ECN) and decreased ReHo in the default mode network (DMN) and saline network (SN). In addition, resting-state ReHo values in the ECN nodes (e.g., middle frontal gyrus and superior frontal gyrus) was correlated with RT. These findings suggested that semantically congruent audiovisual processing in working memory was superior to unisensory memory recognition and may be involved in the different functional networks such as ECN.One of the most challenging aspects of SAR-based read across is the identification of structurally similar compounds suitable for use as data sources to cover the safety of a target chemical. Matched molecular pair analysis (MMPA) provides a systematic method for mining experimental data for chemical substitutions that may be interpreted in terms of changes in properties. Here we use the relationships between structural substitutions