https://www.selleckchem.com/products/d-4476.html The review suggests the scope for future, work as efficient and effective segmentation methods that work well with diverse images have not been developed. Furthermore, unsupervised and semi-supervised deep learning models were not investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored include image fusion and inclusion of essential clinical features along with the radiological features for better classification accuracy. The review suggests the scope for future, work as efficient and effective segmentation methods that work well with diverse images have not been developed. Furthermore, unsupervised and semi-supervised deep learning models were not investigated for liver disease diagnosis in the reviewed papers. Other areas to be explored include image fusion and inclusion of essential clinical features along with the radiological features for better classification accuracy.Diabetic retinopathy (DR) has become a major worldwide health problem due to the increase in blindness among diabetics at early ages. The detection of DR pathologies such as microaneurysms, hemorrhages and exudates through advanced computational techniques is of utmost importance in patient health care. New computer vision techniques are needed to improve upon traditional screening of color fundus images. The segmentation of the entire anatomical structure of the retina is a crucial phase in detecting these pathologies. This work proposes a novel framework for fast and fully automatic blood vessel segmentation and fovea detection. The preprocessing method involved both contrast limited adaptive histogram equalization and the brightness preserving dynamic fuzzy histogram equalization algorithms to enhance image contrast and eliminate noise artifacts. Afterwards, the color spaces and their intrinsic components were examined to identify the most suitable color model to reveal the foreground pixels against the entire