https://www.selleckchem.com/products/elacestrant.html Perovskite materials, as a multifunctional material, have been widely applied in the field of electrochemistry due to its ion migration properties. Although the lead based halide perovskite has been applied in the anode of the lithium battery, it is necessary to develop new lead-free perovskite anode materials because of its the instability and environmental unfriendliness. Herein, we develop a facile grinding method to prepare ultrahigh Li+ concentration doping Cs2NaBiCl6 powders, which are used as the anode material of the lithium battery. The assembled battery possesses a stable specific capacity of about 300 mA h g-1 with over 99% Coulombic efficiency. Owing to their particular crystal structure with high adjustability, the double perovskite materials have promising potentials in lithium storage applications.Palladium-catalyzed C-N bond formation is one of the widely used transformations for the synthesis of structurally diverse N-heterocycles. This work describes an efficient palladium-catalyzed multiple-C-N bond formation reaction for the synthesis of highly π-conjugated N-heterocycles, indolo[3,2-b]indoles with di-tert-butyldiaziridinone. The reaction likely proceeds through the initial formation of an indole-fused palladacycle by nucleophilic aminopalladation and subsequent bisamination to give indolo[3,2-b]indoles.Although multivalent glycosidase inhibitors have shown enhanced glycosidase inhibition activities, further applications and research directions need to be developed in the future. In this paper, two positional isomeric perylene bisimide derivatives (PBI-4DNJ-1 and PBI-4DNJ-2) with 1-deoxynojirimycin conjugated were synthesized. Furthermore, PBI-4DNJ-1 and PBI-4DNJ-2 showed positional isomeric effects on the optical properties, self-assembly behaviors, glycosidase inhibition activities, and hypoglycemic effects. Importantly, PBI-4DNJ-1 exhibited potent hypoglycemic effects in mice with 41.33 ± 2