https://www.selleckchem.com/products/PI-103.html The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.By analyzing cell size and shapes of the bacterium Bacillus subtilis under nutrient perturbations, protein depletion, and antibiotic treatments, we find that cell geometry is extremely robust, reflected in a well-conserved scaling relation between surface area (S) and volume (V), S∼Vγ, with γ=0.85. We develop a molecular model supported by single-cell simulations to predict that the surface-to-volume scaling exponent γ is regulated by nutrient-dependent production of metabolic enzymes that act as cell division inhibitors in bacteria. Using theory that is supported by experimental data, we predict the modes of cell shape transformations in different bacterial species and propose a mechanism of cell shape adaptation to different nutrient perturbations. For organisms with high surface-to-volume scaling exponent γ, such as B. subtilis, cell width is not sensitive to growth-rate changes, whereas organisms with low γ, such as Acinetobacter baumannii, cell shape adapts readily to growth-rate changes.Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The failure of chemotherapy in HCC patients is partly due to inadequate intracellular drug accumulation caused by abnormally expressed drug transporters. Human organic anion transporter 2 (hOAT2), a transporter mainly expressed in liver and kidney, is responsible for uptake of various antineoplastic drugs such as 5-fluorouracil (5-FU). Among 32 pairs of human HCC samples, we preliminarily found that OAT2 was suppressed in HCC tissues compared with matched tumor-adjacent tissues at both mRNA and protein levels, which resulted in 5-FU resistance in HCC. However, the epigenetic regulatory mechanisms of OAT2 downregulation have not been investigated. In this stu