https://www.selleckchem.com/products/z-ietd-fmk.html The seasonality in δ34Ssulfate has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ18Osulfate is consistent with that of δ18Owater values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO2. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ34S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the 34S-depleted SO2 emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ34S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.Imidacloprid (IMI) is one of the most extensively used chlorinated organic pesticides and its widespread occurrence makes it attract increased public concern and scientific interest. Peroxymonosulfate (PMS) activation has been widely studied for the elimination of organic pollutants from water. But few studies are focused on their heterogeneous catalytic performance towards imidacloprid especially with the presence of silver ferrite nanoparticles (nAgFeO2)-based catalysts. Herein, the catalyst, nAgFeO2, was prepared via a co-precipitation method, and further applied to activate PMS for the removal of imidacloprid (IMI). Our results demonstrated that the prepared nAgFeO2 significantly promoted the activation of PMS for removing IMI, and the removal of IMI followed a pseudo first-order kinetics model with the corresponding nAgFeO2 dosage. Electron paramagnetic resonance (EPR) and quenching tests revealed the singlet oxygen (1O2)-mediated nonradical pathway, instead of hydroxyl radical