https://www.selleckchem.com/products/tariquidar.html in concentrations, while Kallsil Dry and Feed Aid Wide Spectrum did not.The objective of this study was to determine the impact of beef production systems utilizing additive combinations of growth promotant technologies on animal and carcass performance and environmental outcomes. Crossbred steer calves (n =120) were stratified by birth date, birth weight, and dam age and assigned randomly to one of four treatments 1) no technology (NT; control), 2) antibiotic treated (ANT; NT plus therapeutic antibiotics and monensin and tylosin), 3) implant treated (IMP; ANT plus a series of 3 implants, and 4) beta-agonist treated (BA; IMP plus ractopamine-HCl for the last 30 d prior to harvest). Weaned steers were fed in confinement (dry lot) and finished in an individual feeding system to collect performance data. At harvest, standard carcass measures were collected and the United States Department of Agriculture (USDA) Yield Grade and Quality Grade were determined. Information from the cow-calf, growing, and finishing phases were used to simulate production systems using the USDA Integrated Farm System Model, which included a partial life cycle assessment of cattle production for greenhouse gas (GHG) emissions, fossil energy use, water use, and reactive N loss. Body weight in suckling, growing, and finishing phases as well as hot carcass weight was greater (P 0.05) USDA Yield grade. The life cycle assessment revealed that IMP and BA treatments reduced GHG emissions, energy use, water use, and reactive nitrogen loss compared to NT and ANT. These data indicate that growth promoting technologies increase carcass yield while concomitantly reducing carcass quality and environmental impacts.Survival, feed efficiency, growth, and fertility of swine are dependent on colostrum intake in the first 24 h after birth. This study determined the effects of three doses of a homogeneous colostrum sample on 24-h body weight, rectal temperature