https://www.selleckchem.com/products/otx015.html We establish the ultimate limits that quantum theory imposes on the accuracy attainable in optical ellipsometry. We show that the standard quantum limit, as usually reached when the incident light is in a coherent state, can be surpassed with the use of appropriate squeezed states and, for tailored beams, even pushed to the ultimate Heisenberg limit.We develop a dispersive phase filter design framework suitable for compact integration using waveguide Bragg gratings (WBGs) in silicon. Our proposal is to utilize an equivalent "discrete" spectral phase filtering process, in which the original continuous quadratic spectral phase function of a group velocity dispersion (GVD) line is discretized and bounded in a modulo 2π basis. Through this strategy, we avoid the phase accumulation of the GVD line, leading to a significant reduction in device footprint (length) as compared to conventional GVD devices (e.g., using a linearly chirped WBG). The proposed design is validated through numerical simulations and proof-of-concept experiments. Specifically, using the proposed methodology, we demonstrate 2× pulse repetition-rate multiplication of a 10 GHz picosecond pulse train by dispersion-induced Talbot effect on a silicon chip.We demonstrate the impact of the optics roughness in Öffner stretchers used in chirped pulse amplification laser chains and how it is possible to improve the temporal contrast ratio in the temporal range of 10-100 ps by adequately choosing the optical quality of the key components. Experimental demonstration has been realized in the front-end source of the multi-petawatt (PW) laser facility Apollon, resulting in an enhancement of the contrast ratio by two to three orders of magnitude.We report a high energy, narrow spectral linewidth mid-infrared laser pulse output from a NdY3Al5O12 laser-pumped BaGa4Se7 (BGSe) crystal-based optical parametric oscillator (OPO). Output pulse energy of 21.5 mJ was obtained at