https://www.selleckchem.com/products/indisulam.html In this study, the effects of disperse blue dye-sensitization on the photocatalytic properties of the Ag-N co-doped TiO2 nanoparticles loaded on polyethylene terephthalate (PET) filaments are investigated under visible light irradiation. The microstructure and photocatalytic properties of the as-synthesized TiO2 nanocomposites, as well as the as-prepared PET filaments, are systematically characterized. The photocatalytic performance of the PET filaments coated with the Ag-N co-doped TiO2 nanoparticles sensitized with disperse blue dyes is evaluated via its capacity of photo-degrading methyl orange (MO) dyes under visible light irradiation. It is found that the holes are the predominant reactive radical species and the hydroxyl and superoxide radicals play a subordinate role in the photocatalytic reaction process. The reaction rate constant of the photocatalytic composite filaments is nearly 4.0 times higher than that of the PET filaments loaded solely with TiO2 nanoparticles. The resultant photocatalytic composite filaments are evident to be capable of repeatedly photo-degrading MO dyes without losing its photocatalytic activity significantly.Synthesis of anisotropic Janus particles (AnJPs) is crucial for understanding the fundamental principles behind non-equilibrium self-organization of cells, bacteria, or enzymes, and for the design of novel multicomponent carriers for guided self-assembly, drug delivery or molecular imaging. Their catalytic activity, as well as many other chemical and physical properties are intimately related to the nano- and mesoscale structure. An efficient and fast in situ monitoring of the structural changes involves non-destructive techniques which can probe macroscopic volumes of multicomponent systems, such as small-angle scattering (SAS). However, the interpretation of scattering data is often a difficult task since the existing models deal only with symmetric AnJPs, thus greatly restr