https://www.selleckchem.com/products/abtl-0812.html Modeling diffusion of nonspherical particles presents an unsolved and considerable challenge, despite its importance for the understanding of crowding effects in biology, food technology and formulation science. A common approach in experiment and simulation is to map nonspherical objects on effective spheres to subsequently use the established predictions for spheres to approximate phenomena for nonspherical particles. Using numerical evaluation of the hydrodynamic mobility tensor, we show that this so-called effective sphere model fundamentally fails to represent the self-diffusion in solutions of ellipsoids as well as rod-like assemblies of spherical beads. The effective sphere model drastically overestimates the slowing down of self-diffusion down to volume fractions below 0.01. Furthermore, even the linear term relevant at lower volume fraction is inaccurate, linked to a fundamental misconception of effective sphere models. To overcome the severe problems related with the use of effective sphere models, we suggest a protocol to predict the short-time self-diffusion of rod-like systems, based on simulations with hydrodynamic interactions that become feasible even for more complex molecules as the essential observable shows a negligible system-size effect.The flow of electric current in quantum well breaks the space inversion symmetry, which leads to the dependence of the radiation transmission on the relative orientation of current and photon wave vector, this phenomenon can be named current drag of photons. We have developed a microscopic theory of such an effect for intersubband transitions in quantum wells taking into account both depolarization and exchange-correlation effects. It is shown that the effect of the current drag of photons originates from the asymmetry of intersubband optical transitions due to the redistribution of electrons in momentum space. We show that the presence of dc electric current l