Through logistic regression, multinomial logistic regression, and text analysis, we are able to shed light on the riskiest ICOs.High risk professions, such as pilots, police officers, and TSA agents, require sustained vigilance over long periods of time and/or under conditions of little sleep. This can lead to performance impairment in occupational tasks. Predicting impaired states before performance decrement manifests is critical to prevent costly and damaging mistakes. We hypothesize that machine learning models developed to analyze indices of eye and face tracking technologies can accurately predict impaired states. To test this we trained 12 types of machine learning algorithms using five methods of feature selection with indices of eye and face tracking to predict the performance of individual subjects during a psychomotor vigilance task completed at 2-h intervals during a 25-h sleep deprivation protocol. Our results show that (1) indices of eye and face tracking are sensitive to physiological and behavioral changes concomitant with impairment; (2) methods of feature selection heavily influence classification performance of machine learning algorithms; and (3) machine learning models using indices of eye and face tracking can correctly predict whether an individual's performance is "normal" or "impaired" with an accuracy up to 81.6%. https://www.selleckchem.com/products/evobrutinib.html These methods can be used to develop machine learning based systems intended to prevent operational mishaps due to sleep deprivation by predicting operator impairment, using indices of eye and face tracking.Textual analysis is a widely used methodology in several research areas. In this paper we apply textual analysis to augment the conventional set of account defaults drivers with new text based variables. Through the employment of ad hoc dictionaries and distance measures we are able to classify each account transaction into qualitative macro-categories. The aim is to classify bank account users into different client profiles and verify whether they can act as effective predictors of default through supervised classification models.Twitter constitutes a rich resource for investigating language contact phenomena. In this paper, we report findings from the analysis of a large-scale diachronic corpus of over one million tweets, containing loanwords from te reo Māori, the indigenous language spoken in New Zealand, into (primarily, New Zealand) English. Our analysis focuses on hashtags comprising mixed-language resources (which we term hybrid hashtags), bringing together descriptive linguistic tools (investigating length, word class, and semantic domains of the hashtags) and quantitative methods (Random Forests and regression analysis). Our work has implications for language change and the study of loanwords (we argue that hybrid hashtags can be linked to loanword entrenchment), and for the study of language on social media (we challenge proposals of hashtags as "words," and show that hashtags have a dual discourse role a micro-function within the immediate linguistic context in which they occur and a macro-function within the tweet as a whole).Computational Creativity is a multidisciplinary field that tries to obtain creative behaviors from computers. One of its most prolific subfields is that of Music Generation (also called Algorithmic Composition or Musical Metacreation), that uses computational means to compose music. Due to the multidisciplinary nature of this research field, it is sometimes hard to define precise goals and to keep track of what problems can be considered solved by state-of-the-art systems and what instead needs further developments. With this survey, we try to give a complete introduction to those who wish to explore Computational Creativity and Music Generation. To do so, we first give a picture of the research on the definition and the evaluation of creativity, both human and computational, needed to understand how computational means can be used to obtain creative behaviors and its importance within Artificial Intelligence studies. We then review the state of the art of Music Generation Systems, by citing examples for all the main approaches to music generation, and by listing the open challenges that were identified by previous reviews on the subject. For each of these challenges, we cite works that have proposed solutions, describing what still needs to be done and some possible directions for further research.To better support creative software developers and music technologists' needs, and to empower them as machine learning users and innovators, the usability of and developer experience with machine learning tools must be considered and better understood. We review background research on the design and evaluation of application programming interfaces (APIs), with a focus on the domain of machine learning for music technology software development. We present the design rationale for the RAPID-MIX API, an easy-to-use API for rapid prototyping with interactive machine learning, and a usability evaluation study with software developers of music technology. A cognitive dimensions questionnaire was designed and delivered to a group of 12 participants who used the RAPID-MIX API in their software projects, including people who developed systems for personal use and professionals developing software products for music and creative technology companies. The results from questionnaire indicate that participants found the RAPID-MIX API a machine learning API which is easy to learn and use, fun, and good for rapid prototyping with interactive machine learning. Based on these findings, we present an analysis and characterization of the RAPID-MIX API based on the cognitive dimensions framework, and discuss its design trade-offs and usability issues. We use these insights and our design experience to provide design recommendations for ML APIs for rapid prototyping of music technology. We conclude with a summary of the main insights, a discussion of the merits and challenges of the application of the CDs framework to the evaluation of machine learning APIs, and directions to future work which our research deems valuable.