The plasmon resonance of a structure is primarily dictated by its optical properties and geometry, which can be modified to enable hot-carrier photodetectors with superior performance. Recently, metal alloys have played a prominent role in tuning the resonance of plasmonic structures through chemical composition engineering. However, it has been unclear how alloying modifies the time dynamics of the generated hot-carriers. In this work, we elucidate the role of chemical composition on the relaxation time of hot-carriers for the archetypal AuxAg1-x thin film system. Through time-resolved optical spectroscopy measurements in the visible wavelength range, we measure composition-dependent relaxation times that vary up to 8× for constant pump fluency. Surprisingly, we find that the addition of 2% of Ag into Au films can increase the hot-carrier lifetime by approximately 35% under fixed fluence, as a result of a decrease in optical loss. Further, the relaxation time is found to be inversely proportional to the imaginary part of the permittivity. Our results indicate that alloying is a promising approach to effectively control hot-carrier relaxation time in metals.Surface plasmon polariton (SPP) provides an important platform for the design of various nanophotonic devices. However, it is still a big challenge to achieve spatiotemporal manipulation of SPP under both spatially nanoscale and temporally ultrafast conditions. Here, we propose a method of spatiotemporal manipulation of SPP pulse in a plasmonic focusing structure illuminated by a dispersed femtosecond light. Based on dispersion effect of SPP pulse, we achieve the functions of dynamically controlled wavefront rotation in SPP focusing and redirection in SPP propagation within femtosecond range. The influences of structural parameters on the spatiotemporal properties of SPP pulse are numerically studied, and an analytical model is built to explain the results. The spatiotemporal coupling of modulated SPP pulses to dielectric waveguides is also investigated, demonstrating an ultrafast turning of propagation direction. This work has great potential in applications such as on-chip ultrafast photonic information processing, ultrafast beam shaping and attosecond pulse generation.Rapid cell identification is achieved in a compact and field-portable system employing single random phase encoding to record opto-biological signatures of living biological cells of interest. The lensless, 3D-printed system uses a diffuser to encode the complex amplitude of the sample, then the encoded signal is recorded by a CMOS image sensor for classification. Removal of lenses in this 3D sensing system removes restrictions on the field of view, numerical aperture, and depth of field normally imposed by objective lenses in comparable microscopy systems to enable robust 3D capture of biological volumes. Opto-biological signatures for two classes of animal red blood cells, situated in a microfluidic device, are captured then input into a convolutional neural network for classification, wherein the AlexNet architecture, pretrained on the ImageNet database is used as the deep learning model. Video data was recorded of the opto-biological signatures for multiple samples, then each frame was treated as an input image to the network. The pre-trained network was fine-tuned and evaluated using a dataset of over 36,000 images. The results show improved performance in comparison to a previously studied Random Forest classification model using extracted statistical features from the opto-biological signatures. The system is further compared to and outperforms a similar shearing-based 3D digital holographic microscopy system for cell classification. In addition to improvements in classification performance, the use of convolutional neural networks in this work is further demonstrated to provide improved performance in the presence of noise. Red blood cell identification as presented here, may serve as a key step toward lensless pseudorandom phase encoding applications in rapid disease screening. To the best of our knowledge this is the first report of lensless cell identification in single random phase encoding using convolutional neural networks.We have investigated the effect of cascaded optical nonlinearity on the spatial beam properties of a femtosecond optical parametric oscillator (OPO). The OPO was operated with a tunable phase mismatch by varying the angle of the nonlinear crystal. The cascaded nonlinearity induced self-focusing and defocusing changed resonator's stability and impacted mode properties. With tuning of a phase mismatch, the calculated parabolic part of cascaded nonlinearity lens focal length changes from f ∼ 30 mm (D ∼ 33 m-1 at Δθ ∼ -0.5o) to infinity and back to f ∼ -110 mm (D ∼ -9 m-1 at Δθ ∼ 0.9o) in the LBO nonlinear crystal. Such high power nonlinear lenses in a cavity operated near its stability limit promoted the generation of axially asymmetric or pass-to-pass unstable resonator modes. https://www.selleckchem.com/products/hygromycin-b.html It was shown that phase mismatched optical parametric oscillation changes the physical character of the resonator from linear to ring-like with two nonlinear crystals having two different focusing powers. Calculations showed that the QCN induced spatial nonlinear phase should lead to severe longitudinal chromatic aberrations for broad spectrum pulses. A numerical simulation in XYZ spatial domain and calculations using ABCD matrix approach confirmed the physical mechanisms underlying the experimental results and allowed for the interpretation of the observed effects.Quantum optical methods have great potential for highly efficient discrimination of chiral molecules. We propose quantum interference-based schemes of enantio-discrimination under microwave regime among molecular rotational states. The quantum interference between field-driven one- and two-photon transitions of two higher states is designed to be constructive for one enantiomer but destructive for the other, since a certain transition dipole moment can be set to change sign with enantiomers. Therefore, two enantiomers can evolve into entirely different states from the same ground state. Through strengthening the constructive interference, the quantum Zeno effect is found in one enantiomer and then its excitation is suppressed, which also enables the enantio-discrimination. We simulate the schemes for differentiating between S and R enantiomers of 1, 2-propanediol (C3H8O2) molecules. With the analysis of the phase sensitivity to microwave fields and the effect of energy relaxations, the highly efficient enantio-discrimination of the 1, 2-propanediol molecules may be achieved.