https://www.selleckchem.com/products/vx-561.html The use of micrometric-sized vehicles could greatly improve selectivity of cytotoxic compounds as their lack of self-diffusion could maximize their retention in tissues. We have used polysilicon microparticles (SiμP) to conjugate bipyridinium-based compounds, able to induce cytotoxicity under regular intracellular conditions. Homogeneous functionalization in suspension was achieved, where the open-chain structure exhibits a more dense packing than cyclic analogues. The microparticles internalized induce high cytotoxicity per particle in cancerous HeLa cells, and the less densely packed functionalization using cyclophanes promotes higher cytotoxicity per bipy than with open-chain analogues. The self-renewing ability of the particles and their proximity to cell membranes may account for increased lipid peroxidation, achieving toxicity at much lower concentrations than that in solution and in less time, inducing highly efficient cytotoxicity in cancerous cells.Hydrogel microspheres have drawn great attention as functional three-dimensional (3D) microcarriers for cell attachment and growth, which have shown great potential in cell-based therapies and biomedical research. Hydrogels derived from a decellularized extracellular matrix (dECM) retain the intrinsic physical and biological cues from the native tissues, which often exhibit high bioactivity and tissue-specificity in promoting tissue regeneration. Herein, a novel two-stage temperature-controlling microfluidic system was developed which enabled production of pristine dECM hydrogel microspheres in a high-throughput manner. Porcine decellularized peripheral nerve matrix (pDNM) was used as the model raw dECM material for continuous generation of pDNM microgels without additional supporting materials or chemical crosslinking. The sizes of the microspheres were well-controlled by tuning the feed ratios of water/oil phases into the microfluidic device. The resulting pDNM m