The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae), and greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera Aleyrodidae), are highly problematic plant pests and virus vectors with worldwide distributions. Identification of whitefly species is typically accomplished by observation of distinct morphological characters; however, because of morphological inconsistency and indistinguishability, the discrimination of B. tabaci species variants is dependent on molecular techniques based on genetic differences. New assays were designed for the detection of B. tabaci A, B, and Q mitotype groups, and T. vaporariorum. https://www.selleckchem.com/products/BIBW2992.html Specific primer sets were designed for amplification of the mitochondrial cytochrome c oxidase I gene of the four targets to perform in end-point PCR, real-time PCR coupled to high-resolution melting analysis (HRM), and the isothermal helicase-dependent amplification (HDA). Primer specificities were validated using end-point PCR, then tested in HRM and HDA. Bemisia tabaci A, B, and Q mitotypes, and T. vaporariorum-targeted primer sets discriminately amplified specimens of different populations within their target whitefly group. These tests provide three novel discrimination assays for the high-consequence, exotic B. tabaci B and Q groups, along with the native B. tabaci A group and T. vaporariorum.Natural killer (NK) cell-mediated killing involves the membrane fusion of preformed lytic granules. While the roles of actin and microtubules are well accepted during this process, the function of septins, another cytoskeletal component that associates with actin and microtubules, has not been investigated. Here we show that genetic depletion or pharmacologic stabilization of the septin cytoskeleton significantly inhibited NK cell cytotoxicity. Although the stabilization of septin filaments impaired conjugate formation, depletion of septin proteins had no impact on conjugate formation, lytic granule convergence, or MTOC polarization to the cytotoxic synapse (CS). Interestingly, septins copurify and accumulate near the polarized lytic granules at the CS, where they regulate lytic granule release. Mechanistically, we find that septin 7 interacts with the SNARE protein syntaxin 11 and facilitates its interaction with syntaxin binding protein 2 to promote lytic granule fusion. Altogether, our data identify a critical role for septins in regulating the release of lytic granule contents during NK cell-mediated killing.Data from a recent epidemiological surveillance network showed a decrease in the reported number of sexually transmitted diseases (STDs) and food-borne infections. We reflect on the possible drivers and consequences of a decrease in these transmittable infectious diseases linked to human contact in relation to social distancing due to the COVID-19 pandemic in Madrid (Spain). PAX8 is a transcription factor required for thyroid development, and its mutation causes congenital hypothyroidism (CH). More than 20 experimentally verified loss-of-function PAX8 mutations have been described, and all but one were located in the DNA-binding paired domain. We report the identification and functional characterization of 3 novel truncating PAX8 mutations located outside the paired domain. Three CH probands, diagnosed in the frame of newborn screening, had thyroid hypoplasia and were treated with levothyroxine. Next-generation sequencing-based mutation screening was performed. Functionality of the identified mutations were verified with Western blotting, intracellular localization assays, and transactivation assays with use of HeLa cells. Luciferase complementation assays were used to evaluate the effect of mutations on the interaction between PAX8 and its partner, NKX2-1. Each proband had novel truncating PAX8 mutations that were I160Sfs*52, Q213Efs*27, and F342Rfs*85. Western blotting is required for the PAX8-NKX2-1 interaction. With more countries exiting lockdown, public health safety requires screening measures at international travel entry points that can prevent the reintroduction or importation of the severe acute respiratory syndrome-related coronavirus-2. Here, we estimate the number of cases captured, quarantining days averted and secondary cases expected to occur with screening interventions. To estimate active case exportation risk from 153 countries with recorded coronavirus disease-2019 cases and deaths, we created a simple data-driven framework to calculate the number of infectious and upcoming infectious individuals out of 100 000 000 potential travellers from each country, and assessed six importation risk reduction strategies; Strategy 1 (S1) has no screening on entry, S2 tests all travellers and isolates test-positives where those who test negative at 7days are permitted entry, S3 the equivalent but for a 14day period, S4 quarantines all travellers for 7days where all are subsequently permitted entry, S5 the equplace. If testing is not feasible, quarantining for a minimum of 14 days is recommended with strict adherence measures in place. Obesity is a major health problem associated with severe comorbidities, including type 2 diabetes and cancer, wherein microRNAs (miRNAs) might be useful as diagnostic/prognostic tools or therapeutic targets. To explore the differential expression pattern of miRNAs in obesity and their putative role in obesity-related comorbidities such as insulin resistance. An Affymetrix-miRNA array was performed in plasma samples from normoweight (n = 4/body mass index < 25) and obese subjects (n = 4/body mass index > 30). The main changes were validated in 2 independent cohorts (n = 221/n = 18). Additionally, in silico approaches were performed and in vitro assays applied in tissue samples and prostate (RWPE-1) and liver (HepG2) cell-lines. A total of 26 microRNAs were altered (P < 0.01) in plasma of obese subjects compared to controls using the Affymetrix-miRNA array. Validation in ampler cohorts revealed that miR-4454 levels were consistently higher in obesity, associated with insulin-resistance (Homeostevels were higher, associated with insulin-resistance and modulated by obesity-controlling interventions. Insulin regulated miR-4454, which, in turn may impair the cellular response to insulin, in a cell type-dependent manner (i.e., prostate gland), by modulating the splicing process.