https://www.selleckchem.com/products/gmx1778-chs828.html 0001) which decreased with dietary taurine supplementations, particularly greater doses. The gene expressions of ileal PEPT1, EAAT3, CAT1, CAT2, SGLT1, SGLT5, GLUT2, and GLUT5 decreased under HS conditions (P = 0.001). However, supplementing taurine, in a dose-dependent fashion, to the diet of quails reared under HS resulted in increases in the gene expressions of the transporters (P less then 0.05) except for CAT1. The results of the present work showed that taurine supplementation, particularly with greater doses (5 g/kg), to the diet of laying quails kept under HS acts as alleviating negative effects of HS, resulting in improvements in productive performance and nutrient digestion, and also upregulation of ileal nutrient transporters.Open-flow respirometry is a common method to measure oxygen-uptake as a proxy of energy expenditure of organisms in real-time. Although most often used in the laboratory it has seen increasing application under field conditions. Air is drawn or pushed through a metabolic chamber or the nest with the animal, and the O2 depletion and/or CO2 accumulation in the air is analysed to calculate metabolic rate and energy expenditure. Under field conditions, animals are often measured within the microclimate of their nest and in contrast to laboratory work, the temperature of the air entering the nest cannot be controlled. Thus, the aim of our study was to determine the explanatory power of respirometry in a set-up mimicking field conditions. We measured O2 consumption of 14 laboratory mice (Mus musculus) using three different flow rates [50 L*h-1 (834 mL*min-1), 60 L*h-1 (1000 mL*min-1) and 70 L*h-1 (1167 mL*min-1)] and two different temperatures of the inflowing air; either the same as the temperature inside the metabolic chamber (no temperature differential; 20 °C), or cooler (temperature differential of 10 °C). Our results show that the energy expenditure of the mice did not change s