https://www.selleckchem.com/peptide/gp91ds-tat.html In addition, an excellent antibacterial effect was achieved. After irradiation under an 808 nm laser, the Bi-Ag@PVP NPs can destroy the integrity of Escherichia coli, thereby inhibiting E. coli growth, which can minimize the risk of infection during cancer therapy. In conclusion, our study provides a novel nanotheranostic platform that can achieve CT/PA-guided PDT/PTT synergistic therapy and have potential antibacterial properties. Thus, this work provides an effective strategy for further broad clinical application prospects.Ozone is a poisonous gas, so it is necessary to remove excessive ozone in the environment. Catalytic decomposition is an effective way to remove ozone at room temperature. In this work, 10%Ag/nano-Al2O3 and 10%Ag/AlOOH-900 catalysts were synthesized by the impregnation method. The 10%Ag/nano-Al2O3 catalyst showed 89% ozone conversion for 40 ppm O3 for 6 h under a space velocity of 840 000 h-1 and a relative humidity of 65%, which is superior to 10%Ag/AlOOH-900 (45% conversion). The characterization results showed Ag nanoparticles to be the active sites for ozone decomposition, which were more highly dispersed on nano-Al2O3 as a result of the greater density of terminal hydroxyl groups. The understanding of the dispersion and valence of silver species gained in this study will be beneficial to the design of more efficient supported silver catalysts for ozone decomposition in the future.The microfeatures of coal mine methane (CMM) hydrates, synthesized with three gas samples (CH4/C2H6/N2, G1 = 43 47 10, G2 = 60 30 10, and G3 = 74 16 10) in a self-made transparent high-pressure cell at 275.15 K and 5 MPa were investigated using Raman spectroscopy. As a discriminator, the vibrational band frequencies in the C-C regions of the recorded hydrate Raman spectra for C2H6 show that G1∼G3 hydrates are structure I. The three principal parameters used to study the microfeatures of the model CMM hydrates, in