https://www.selleckchem.com/products/erastin2.html Tunable luminescent materials have attracted considerable interest for their wide applications in electronic optical devices, biological probes and sensors, tunable displays, and security technologies. Herein, we describe a strategy of coordination-driven self-assembly in order to prepare discrete tetraphenylethene-based platinum(II) bis-triangular dicycles 1 and 2 with aggregation-induced emission properties. The X-ray structure confirms that they possess two triangular cavities in which free rotation of the central TPE unit is restricted. As a kind of fluorescent material, the AIE-active dicycles have good emissions with wide tunability based on their aggregate states by changing different solvents, adjusting the temperature, or combining them with other dyes (e.g., perylene) via a co-assembly process.Host cell surface glycans play critical roles in influenza virus A (IVA) infection ranging from modulation of IVA attachment to membrane fusion and host tropism. Approaches for quick and sensitive profile of viral avidity toward a specific type of host cell glycan can contribute to the understanding of tropism switching among different IVA strains. Here, we developed a method based on chemoenzymatic glycan engineering to investigate the possible involvement of α1-2-fucosides in IVA infections. Using a truncated human fucosyltransferase 1 (hFUT1), we created α1-2-fucosides in situ on host cells to assess their influence on the host cell binding to IVA hemagglutinin and the susceptibility of host cells toward IVA-induced killing. We discovered that the newly created α1-2-fucosides on host cells enhanced the infection of several human pandemic IVA subtypes either directly or indirectly. These findings suggest that glycan epitopes other than sialic acid should also be considered for assessing the human pandemic risk of this viral pathogen.We describe the creation of a mass spectral library of acylcarnitines and conjugate