https://www.selleckchem.com/products/hmpl-504-azd6094-volitinib.html In the current study, 16 congeners of PAHs were measured in 32 surface sediment samples to determine their pollution status in the Jiangsu coastal zone, East China. The total concentrations of the 16 PAHs ranged from 2.2 to 46.6 ng g-1 with an average of 8.36 ng g-1 in surface sediments and were significantly lower than those of PAHs in other coastal areas of China. The spatial distribution of PAHs revealed an increasing trend from nearshore to offshore, controlled by the regional sedimentary dynamic environment. Diagnostic ratios and positive matrix factorization demonstrated that petroleum, industries, biomass and coal combustion, and marine and vehicular traffic sources contributed to 28.9%, 25.5%, 24.7%, and 20.9% of the total PAHs, respectively. Risk assessment suggested that the carcinogenic risks were less then 1 × 10-4 for all age groups in the area, indicating that long-term seafood consumption does not pose a significant cancer risk in this area.In the face of increasing anthropogenic threats, coastal nations need to reach common ground for effective marine conservation. Understanding species' connectivity can reveal how nations share resources, demonstrating the need for cooperative protection efforts. Unfortunately, connectivity information is rarely integrated into the design of marine protected areas (MPAs). This is exemplified in the Red Sea where biodiversity is only nominally protected by a non-cohesive network of small-sized MPAs, most of which are barely implemented. Here, we showcase the potential of using connectivity patterns of flagship species to consolidate conservation efforts in the Red Sea. We argue that a large-scale MPA (LSMPA) would more effectively preserve Red Sea species' multinational migration routes. A connectivity-informed LSMPA approach provides thus one avenue to unite coastal nations toward acting for the common good of conservation and reverse the global de