https://www.selleckchem.com/Androgen-Receptor.html ially higher medication cost. Upon accounting for the costs associated with treatment of rNMB/PP related complications, 93.6% of medication cost is projected to be offset. In balance, sugammadex appears to offer good value for reversal of neuromuscular blockade for laparoscopic surgery in China. Diabetic retinopathy (DR), currently considered as a neurovascular disease, has become the major cause of blindness. More and more scholars believe that DR is no longer just a kind of microvascular disease, but accompanied by retinal neurodegenerative changes. Intravitreal injection of anti-vascular endothelial growth factor (VEGF) drugs is a classic treatment for DR; however, anti-VEGF drugs can exacerbate fibrosis and eventually lead to retinal detachment. The aim of this study was to explore the pathogenesis of DR and identified new treatments that can provide dual-target intervention for angiogenesis and fibrosis. We explored changes in gene expression in high glucose-induced vascular endothelial cells using RNA sequencing (RNA-seq) technology. We identified bone morphogenetic protein 4 (BMP4) and SMAD family member 9 (SMAD9) among 449 differentially expressed genes from RNA-seq data and confirmed the expression of these two genes in the blood of diabetes patients by RT-PCR and in streptozotocin-inducsignificantly upregulate the expression of SMAD9 and promote the expression of VEGF and fibrosis factors. This study is the first to analyze the mechanism by which high glucose levels affect retinal vascular endothelial cells through RNA transcriptome sequencing and indicates that BMP4 may be a potential target for the dual-target treatment (anti-VEGF and anti-fibrosis) of DR. • High-glucose effect on vascular endothelial cell was analyzed by RNA-seq. • KEGG analysis revealed enrichment of TGF-beta signaling pathway. • SMAD9 and BMP4 expression was upregulated in all samples. • Dual-target therapy of PDR by antagonizing BMP4