https://www.selleckchem.com/products/scr7.html icephobic performance with an excellent Cassie state stability, high humidity resistance, and good deicing durability. We hypothesize that the proposed fabrication strategy and associated basic findings will shed new light on the design of robust ice-resistant superhydrophobic surfaces and contribute to a better understanding of the relationship between superhydrophobicity and ice resistance.Sweet osmanthus (Osmanthus fragrans Lour.) (OF) is one of the ten most famous flowers in China for its unique and delicate fragrance. A combined solid-phase microextraction and solvent-assisted flavor evaporation method was used to accurately capture the overall aromatic profile and characterize the predominant odorants of fresh osmanthus with the help of gas chromatography (GC)-olfactometry and comprehensive two-dimensional GC-quadrupole time-of-flight mass spectrometry (GC × GC-QTOF-MS). Twenty-six volatiles were identified for the first time in OF. A total of 23 potent odorants, dominated by monoterpene oxides and C6 aliphatic aldehydes, were identified. The efficacy of pectinase, β-glucosidase, and their combination on the aroma enhancement of OF was evaluated by quantitation of the target aroma components using GC-triple quadrupole-MS. The total concentration of key aroma components increased in all three enzyme treatment groups, and the increase was more significant in two β-glucosidase-treated groups. Changes in odor activity values and odor spectrum values of key odorants indicated that the pectinase-treated sample had more prominent floral, green, and potato-like scents. In contrast, the β-glucosidase-treated sample had more dominant floral, woody, almond-like, and fruity notes but less green odor, which was confirmed by sensory evaluation. β-Glucosidase and pectinase complement one another very well, and together, promote a remarkable aroma enhancement in OF.Previously, 3D printing of porous materials and metal oxides was