This finding allowed us to conclude that varying molecular spatial arrangement is responsible for the extraordinary dynamical behavior of ITZ, POS, and TER at high pressure.The vapor pressure above ice is lower than that above supercooled water at the same temperature. This inherent hygroscopic quality of ice has recently been exploited to suppress frost growth by patterning microscopic ice stripes along a surface. These vapor-attracting ice stripes prevented condensation frosting from occurring in the intermediate regions; however, the required presence of the sacrificial ice stripes made it impossible to achieve the ideal case of a completely dry surface. Here, we decouple the sacrificial ice from the antifrosting surface by holding an uncoated aluminum surface in parallel with a prefrosted surface. By replacing the overlapping in-plane dry zones with a uniform out-of-plane dry zone, we show that even an uncoated aluminum surface can stay almost completely dry in chilled and supersaturated conditions. Using a blend of experiments and numerical simulations, we show that the critical separation required to keep the surface dry is a function of the ambient supersaturation.Knowledge of tunability of complex optical constants of colloidal CdSe nanoplatelets (NPLs) thin films is essential for accurate modeling and design of NPL-containing optoelectronic devices. Here, dielectric functions, complex optical conductivities, and absorption coefficients of a series of CdSe NPL films with a varying number of atomic layers were investigated in a combination of spectroscopic ellipsometry techniques and transmittance measurements over a broad spectral range. Fine electronic structures were deciphered from the dielectric functions. Oscillator strengths at the lowest exciton resonance up to 0.62 for a series of CdSe NPL films were also determined. From our results, increasing the number of monolayers was found to boost the complex optical constants and the amplitude of the coupling strength of the fundamental exciton state mainly due to higher inorganic volume filling factors and pronounced surface passivation. Our work gives insights into both the interpretation and improvements of performance of CdSe NPL-based photoelectronic applications.Ion-surface scattering experiments can be used to measure elemental depth profiles on the angstrom scale in complex liquid mixtures. We employ NICISS (neutral impact collision ion scattering spectroscopy) to measure depth profiles of dissolved ions and solvent in liquid glycerol containing the cationic surfactant tetrahexylammonium bromide (THA+/Br-) at 0.013 M and mixtures of NaBr + NaCl at 0.4 M total concentration. The experiments reveal that Br- outcompetes Cl- in its attraction to surface THA+, and that THA+ segregates more extensively when more Br- ions are present. Intriguingly, the depths spanned by THA+, Br-, and Cl- ions generally increase with Br- bulk concentration, expanding from ∼10 to ∼25 Å for both Br- and Cl- depth profiles. This broadening likely occurs because of an increasing pileup of THA+ ions in a multilayer region that spreads the halide ions over a wider depth. The experiments indicate that cationic surfactants enhance Br- and Cl- concentrations in the surface region far beyond their bulk-phase values, making solutions coated with these surfactants potentially more reactive toward gases that can oxidize the halide ions.Understanding and controlling factors that restrict the rates of fuel-forming reactions are essential to designing effective catalyst-modified semiconductors for applications in solar-to-fuel technologies. Herein, we describe GaAs semiconductors featuring a polymeric coating that contains cobaloxime-type catalysts for photoelectrochemically powering hydrogen production. The activities of these electrodes (limiting current densities >20 mA cm-2 under 1-sun illumination) enable identification of fundamental performance-limiting bottlenecks encountered at relatively high rates of fuel formation. Experiments conducted under varying bias potential, pH, illumination intensity, and scan rate reveal two distinct mechanisms of photoelectrochemical hydrogen production. At relatively low polarization and pH, the limiting photoactivity is independent of illumination conditions and is attributed to a mechanism involving reduction of substrate protons. At relatively high polarization or pH, the limiting photoactivity shows a linear response to increasing photon flux and is attributed to a mechanism involving reduction of substrate water. https://www.selleckchem.com/ATM.html This work illustrates the complex interplay between transport of photons, electrons, and chemical substrates in photoelectrosynthetic reactions and highlights diagnostic tools for better understanding these processes.This report describes the total synthesis of the complex, oxygenated tetracyclic alkaloid, lyconesidine B. The key synthetic challenge involves diastereoselective generation of a decahydroquinoline ring with a quaternary carbon at the angular position via domino cyclopropanation, ring-opening, and reduction. Another crucial step is the domino ene-yne metathesis involving a quaternary ammonium ion, leading to the construction of a decahydroazaazulen framework.Narrow carbon nanotubes (CNTs) desalinate water, mimicking water channels of biological membranes, yet the physics behind selectivity, especially the effect of the membrane embedding CNTs on water and ion transfer, is still unclear. Here, we report ab initio analysis of the energies involved in transfer of water and K+ and Cl- ions from solution to empty and water-filled 0.68 nm CNTs for different dielectric constants (ϵ) of the surrounding matrix. The transfer energies computed for 1 ≤ ϵ less then ∞ permit a transparent breakdown of the transfer energy to three main contributions binding to CNT, intra-CNT hydration, and dielectric polarization of the matrix. The latter scales inversely with ϵ and is of the order 102/ϵ kJ/mol for both ions, which may change ion transfer from favorable to unfavorable, depending on ion, ϵ, and CNT diameter. This may have broad implications for designing and tuning selectivity of nanochannel-based devices.