https://www.selleckchem.com/products/dnqx.html Both tracers revealed a considerable number of areas of uptake that were reliably identified as benign by trained physicians making use of corresponding morphological imaging and known PSMA pitfalls. These were more frequent with 18F-rhPSMA-7. However, the matched-pair comparison could have introduced a source of bias. Adequate reader training can allow physicians to differentiate benign uptake from disease and be able to benefit from the logistical and clinical advantages of 18F-rhPSMA-7.Purpose Prostate-specific membrane antigen targeted radioligand therapy (PSMA-RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA-RLT. Experimental Design Therapeutic efficacy of PSMA-RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-knockout tumor-bearing Nod scid gamma mice. Two days post-RLT, the (phospho)proteome was analyzed by mass spectrometry. PSMA-RLT significantly improved disease control in a dose-dependent manner. (Phospho)proteomic datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, PI3K/AKT, and MYC signaling. C4-2 TP53-knockout tumors were less sensitive to PSMA-RLT than parental counterparts, supporting a role for TP53 in mediating RLT responsiveness. Conclusion We identified signaling alterations that may mediate resistance to PSMA-RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.The PET radiotracer [18F]-(2S,4R)4¬-Fluoroglutamine (18F-Gln) reflects glutamine transport and can be used to infer