https://www.selleckchem.com/products/cefodizime-sodium.html In the realm of transition-metal catalyzed arene functionalization, rhodium(III) catalysis is considered as exemplary due to its propensity to activate C-H bonds to obtain comprehensive molecular assembly. Herein, we demonstrate a new rhodium(III) catalyzed assembly of polyheterocyclic scaffolds via C-H activation and regioselective annulation of 4-arylbut-3-yn-1-amines with 4-hydroxy-2-alkynoates. Heterocyclization and trans-metalation prior to annulation is the key for initiation of this relay redox-neutral catalytic cascade.Three cadmium coordination polymers, namely, [CdL(OAc)2](C2H5OH)n (1), [CdL(OAc)2](CH3CN)n (2), and [CdL(OAc)2(H2O)]n (3), were synthesized by an exoditopic 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene Schiff base ligand (L) and cadmium acetate in the presence of different solvent systems. Single-crystal X-ray diffraction, powder X-ray diffraction, and thermogravimetric analysis showed that 1D ladder pseudopolymorphic compounds (1 and 2) transformed to the solvent-free 1D linear compound 3 through a rare case of water absorption from air at room temperature. Interestingly, compound 3 was transformed to compound 1 through a dissolution-recrystallization structural transformation process. The results illustrated that solvents and humidity have an important role in the formation of pseudopolymorphs with the same or different structural motifs.[FeFe]-hydrogenases use a unique organometallic complex, termed the H cluster, to reversibly convert H2 into protons and low-potential electrons. It can be best described as a [Fe4S4] cluster coupled to a unique [2Fe]H center where the reaction actually takes place. The latter corresponds to two iron atoms, each of which is bound by one CN- ligand and one CO ligand. The two iron atoms are connected by a unique azadithiolate molecule (-S-CH2-NH-CH2-S-) and an additional bridging CO. This [2Fe]H center is built stepwise thanks to the well-orchestrated a