https://www.selleckchem.com/products/AZ-960.html Managing elastic properties of ABX3 type molecular perovskite ferroelectrics is critical to their future applications since these parameters determine their service durability and reliability in devices. The abundant structural and chemical viability of these compounds offer a convenient way to manipulate their elastic properties through a facile chemical approach. Here, the elastic properties and high-pressure behaviors of two isostructural perovskite ferroelectrics, MDABCO-NH4 I3 and MDABCO-KI3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) is systematically investigated, via the first principles calculations and high-pressure synchrotron X-ray diffraction experiments. It is show that the simple replacement of NH4 + by K+ on the B-site respectively results in up to 48.1%, 52.4%, and 56.3% higher Young's moduli, shear moduli and bulk moduli, which is attributed to the much stronger KI coordination bonding than NH4 …I hydrogen bonding. These findings demonstrate that it is possible to tune elastic properties of molecular perovskite ferroelectrics via simply varying the framework assembling interactions.The circadian clock is an endogenous and self-sustained oscillator that anticipates daily environmental cycles. While rhythmic gene expression of circadian genes is well-described in populations of cells, the single-cell mRNA dynamics of multiple core clock genes remain largely unknown. Here we use single-molecule fluorescence in situ hybridisation (smFISH) at multiple time points to measure pairs of core clock transcripts, Rev-erbα (Nr1d1), Cry1 and Bmal1, in mouse fibroblasts. The mean mRNA level oscillates over 24 h for all three genes, but mRNA numbers show considerable spread between cells. We develop a probabilistic model for multivariate mRNA counts using mixtures of negative binomials, which accounts for transcriptional bursting, circadian time and cell-to-cell heterogeneity, notably in cell size. Decomposi