https://www.selleckchem.com/mTOR.html Solar desalination is an environment-friendly and sustainable technology to address the shortage of freshwater resources. However, it still faces huge challenges to develop a salt-rejection solar desalination system with continuous high efficiency. Herein, an electrospun nanofiber mat was fabricated for continuously high-efficiency solar desalination with carbon nanotube as a photothermal material, polyvinylidene fluoride as a floating support material and polyvinylpyrrolidone as a pore-forming agent. The porous structure and superhydrophilic surface provide significant water transport channels and thus avoid salt deposition, even in the high-salinity brine (20 wt% NaCl). The integration of strong broadband absorption property, excellent photothermal performance, floatability, durability and stability endows the solar desalination system with continuously high evaporation efficiency. The evaporation rate and solar conversion efficiency reached up to 1.372 kg m-2 h-1 and 86.1%, respectively, in simulated seawater under one sun irradiation and lasted for 11 h with little fluctuation. This work opens a new avenue for the rational design and fabrication of solar desalination systems to promote practical application.Porous hydrogel, as a high-efficiency adsorbent for heavy metals, suffers the drawbacks of the use of expensive and toxic reagents during the process of preparation, further limiting its application ranges. Besides, the heavy metals couldn't be transformed into nontoxic species, which leads to the environmental pollution risk. Herein, a three-dimensionally (3D) structured Cu-Fe embedded cross-linked cellulose hydrogel (nFeCu-CH) was innovatively fabricated by a novel self-assembly and in-situ reduction method, which exhibited exceptionally enhanced adsorption-reduction property towards Cr(VI) wastewater. The results of degradation experiment exhibited that the removal reaction followed Langmuir-Hinshelwood first order kin